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FOREWORD

-The development of the PLANS (PLastic and large deflection
ANalysis of Structures) system was conducted by the Grumman
Aerospace Corporation, Bethpage, New York, under partial support
of Contract NAS 1-10087, entitled "Nonlinear Analysis of Struc-
tures." The work was performed by the Research Department of
Grumman Aerospace Corporation, with support from Grumman Data

Systems.

Many people contributed in the development of the PLANS sys-
tem. Thanks go to our colleague, Dr., Alvin Levy, for developing
some of the element capability in PLANS and for his continuous
interest and helpful comments. The authors acknowledge the con-
tribution of Joseph S. Miller for his efforts associated with

the initial programming of the PLANS system.

Special thanks go to Miss Patricia Zirk for her diligence
and dedication to the programming effort required for the de-~
velopment of the PLANS system, and for seeing through the often

thankless tasks involved in the development of a large program.
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"PLANS — A Finite Element Program for Nonlinear

Analysis of Structures, Volume I - Theoretical Manual"

by
A. Pifko, H. S. Levine, and H. Armen, Jr.

Grumman Aerospace Corporation
Bethpage, New York 11714

1. INTRODUCTION AND SUMMARY

This report describes the current state of the PLANS system,
a finite element program for the nonlinear analysis of structures.
PLANS, rather than being a single comprehensive computer program,
represents a collection of special purpose computer programs or
modules, each associated with a distinct physical problem class.
Utilizing this concept, each module is an independent finite ele-
ment computer program with its associated element library that
can be individually loaded and used to solve the problem class of
interest. 1In this manner, any simplification or specialization
germane to the individual analysis can be incorporated within each
program thereby optimizing computational efficiency. Thus, un-
avoidable inefficiencies that result from a more general purpose

program are avoided in each special purpose module.

All the programs in PLANS employ the "initial strain" concept
within an incremental procedure to account for the effect of plas-
ticity and include the capability for cyclic plastic analysis.
Geometric nonlinearities included in several of the modules are
treated by using the "updated" or convected coordinate approach.
These nonlinear terms may be incorporated as effective loads

and/or modifications to the stiffness matrix.




The increased demands from governmental and industrial or-
ganizations associated with aerospace, naval, and nuclear reactor
technology for determining accurate stress, strain, and displace-
ment fields have been a motivating force behind the activity and
advances in the development of techniques for the nonlinear anal~

ysis of structures.

As a result of these advances, the computational capability
available for the nonlinear analysis of structures has experi-
enced a tremendous growth during the past ten years. Indeed, the
level of structural analysis capability that was achieved has out-
stripped our ability to describe accurately complex material be-
havior such as cyclic~-, time-, and temperature-~dependent plas-
ticity., Prior to the development of the programs now available,
the designer or analyst, confronted with a problem involving
structural nonlinearities, was left with a choice of using his
engineering judgment alone, or in conjunction with potentially
expensive laboratory tests. He now has the further option of
performing numerical analysis to gain insight into the behavior

of the structure.

Most nonlinear analysis programs, with the exception of a
few, have been developed as a spin-off of existing programs that
were originally designed for linear structural analysis. Although
this development is a natural one, the added dimension of general~
ity has placed great responsibilities on the user of such pro-

grams. Perhaps the greatest asset of these programs, tne ability



to solve sophisticated problems, also represents a potential lia~
bility, i.e., they always produce numbers. The user must still
exercise engineering judgment in order to interpret the results
meaningfully. The analytic results will confirm these feelings
and provide him with additional insight. However, he now has a
luxury of having his intuition fail him without suffering the

consequences of a catastrophic failure, or an overdesigned system.

The progress associated with solving nonlinear problems has
been the direct result of advances in several interdisciplinary
areas that include structural mechanics, numerical analysis, and
computer systems engineering. Specifically, in the area of struc-
tural mechanics, significant advances have been those associated
with the finite element method. The period of these advances for
linear elastic behavior can be traced to the development of the

displacement method of finite element analysis (Ref. 1).

References 2-16 are representative of advances associated
with incorporating the effects of material nonlinear behavior
into a finite element analysis. The approach taken in these
references is to develop solutions of the repetitive type that
linearize the basically nonlinear problem for a sequence of
loading steps. These developed techniques fall into two cate-
gories: the initial strain (Refs. 2-10) and tangent modulus
(Refs. 11-16) methods. They differ computationally depending
on whether the effect of material nonlinearities enters as
pseudoloads (initial strain) or the stiffmess matrix is ex-

plicitly altered (tangent modulus).

Considerable effort has also been directed towards the treat-
ment of geometric nonlinearities. These efforts are reported in

Refs. 17-22 for consideration of geometric nonlinearities alomne



while the simultaneous treatment of both types of nonlinearities

was reported in Refs. 23-27.

The concurrent contribution from numerical analysis methods
notably has been the development of efficient algorithms to solve,
on a repetitive basis, large systems of equations. The ease with
which the theoretical considerations and numerical algorithms are
efficiently processed and translated into meaningful answers is
attributable to the ingenuity and talents of computer systems en-
gineers who develop the necessary hardware and, in some cases,
software to satisfy what must seem to them the insatiable appe-

tite of the developers of large scale programs.

The advances in the above-mentioned areas have resulted in
the development of many software systems to treat nonlinear be-
havior. These range from simple instructional programs to gen-
eral comprehensive computer systems capable of treating the en~
tire visible spectrum of two and three dimensional problems.
Reference 28 presents in some detail the current capability of
the various general purpose finite element programs that are
available for plastic analysis while Ref. 29 details the avail-

able geometric nonlinear programs.

This report describes the theoretical basis of the PLANS sys-
tem, a collection of special-purpose finite element computer pro-
grams for nonlinear analysis. These programs are an outgrowth of
the work cited in Refs. 6, 8, and 30 conducted by the authors on
the development and implementation of finite element methods for
nonlinear analysis. As such, in order to give an historical pro-
spective of the program's evolution, we first chronologically
summarize the development of the capabilities represented by

PLANS.



1.1 Chronology of the Development of Nonlinear Structural

Analysis Techniques at Grumman Aerospace Corporation

® Contract:
Period:
Ref. Document:

Goal:

Result:

Comments:

NAS 1-5040
5/65-12/66
Ref. 6

To combine existing finite element tech-
nology with plasticity theories to treat
general (including cyclic) loading con~

ditions.

Methodology developed for membrane
stressed structures (two dimensional).
Some verification with NASA experiments

on notched panels under cyclic loading.

The plastic analysis program developed

at this stage required a separate elastic
analysis program to generate influence
coefficients. A restriction of a maximum
of 55 elements with approximately 100
degrees of freedom was enforced on the
basis of core storage limitations. This
early effort is notable for its intro-
duction of a reasonably sophisticated
plasticity theory (kinematic hardening)
within the framework of a complex numeri-

cal structural analysis procedure. The

()]



® Contract:

Period:

Ref. Document:

Goals:

Results:

Comments:

@ Contract:

Period:

synthesis of this capability has served

as a forerunner for subsequent efforts.

NAS 1-7315
6/67-6/69
Ref. 8

1) Extend methods developed in previous
study to treat nonlinear bending be-
havior; and 2) determine the feasibility
of treating combined material and geo-

metric nonlinearities.

1) Introduced and applied the concept of
an elastic-plastic boundary in the plane
and through the thickness of triangular
and rectangular bending elements.
Treated problems associated with bending
alone or combined with membrane loads.
2) Incorporated, on a limited basis, an
incremental technique to account for
combined material and geometric non-

linearities.

Applications to beams and plates. De-
termined collapse loads and modes of a
variety of plate-~-type structures. Com-
bined nonlinearities treated for beams

and arches.

NAS 1-10087

6/70-6/74



Ref. Document:

Goals:

Results:

Ref. 30 and current report

1) Expand "library" of finite elements to
include a broad base of applications;

2) develop general comprehensive program
for the plastic analysis of structures;
3) extend the methods for the treatment
of combined material and geometric non-
linearity; and 4) implement combined
nonlinear analysis techniques into the

program developed in (2).

1) In addition to triangular membrane and
plate elements incorporated in the first
two studies, the following elements were
included into the element library: axi-
symmetric revolved triangle, axisymmetric
shell, 3-D variable node isoparametric
solid element, shear panel, stringers,
axisymmetric rings, general beams of vari-
ous cross sections, and a composite ele-
ment. 2) PLANS has evolved as a collec-
tion of programs each one of which is de-
signed to treat a particular class of
analysis, i.e.,, axisymmetric analysis of
bodies of revolution, 3-D analysis of
solid bodies, etc. (the particular mod~
ules are discussed in more detail in a
subsequent section of this report).

3) General techniques to treat combined
nonlinearities have been developed within

the framework of the previous procedures



to treat plasticity alone. 4) The com-
bined nonlinear analysis techniques were
implemented into PLANS for the analysis
of aﬁisymmetric shell structures and for
general 3-D built-up structures, typical

of aircraft construction.

Comments: The successful completion of the goals
associated with this effort has enabled
analysts to realistically consider prob-
lem areas that could otherwise be only
treated on a heuristic basis. Several
of these problem areas are discussed sub-

sequently in this section.

1.2 Applicable Problem Areas — Current and Future

Only two related motivating factors could justify the cost
associated with developing advanced analytic capabilities such as
those represented by PLANS. The first motivation is that the in-
vestment will result in reducing the cost associated with design-
ing and/or building the system. The second reason for developing
advanced analyses is that the system being considered does not
fall into a general category of those previously designed and in
service. Therefore, there must be the capability to gather in-
sight by test and analysis to demonstrate the integrity of the

system.

In addition to the problems associated with reducing weight
and treating overload conditions, the following problem areas ap-
pear to be the most likely to benefit — from the viewpoint of the
above-mentioned motivating factors — by the further development

of nonlinear structural analyses.



1.2.1 Fatigue and Fracture Analysis

Fatigue life predictions are by-and-large semiempirical pro-
cedures., The techniques generally used have, until recently,
paid little more than lip service to the effects of plastic flow.
It is not realistic to consider such phenomena as the effect of
residual stresses, propagating cracks, and cyclic load spectrum
in a flawed structure without a reasonably accurate treatment of
plastic deformation. Also included in the fatigue and fracture
analysis problem area is fastener technology, where the installa-
tion and operation of the fasteners involve large strains and

deformations.
1.2.2 Crashworthiness Evaluation

A capability for the analysis of general transportation sys-
tems is valuable for evaluating existing designs, post-mortem
analysis of damaged units, predicting the crashworthiness of pro-
posed designs, and establishing crashworthiness design criteria.
Results of crash simulation studies can be used to determine prob-
able damage to passengers, equipment, and structure. In addition,
areas for structural modifications (including energy absnrbers)
can be determined along with their associated cost and/or weight
penalties. Note that the application of such a capability is not
limited to transportation systems, but include design and analysis
of such stationary structures as highway barriers and nuclear con-

tainment vessels subjected to impact loads.
1.2.3 High Temperature Applications

In the design and analysis of nuclear reactor system compo-
nents, large thermal gradients are common; in fact, much of the

plastic deformation results from thermally induced loadings.



Furthermore, these loadings tend to be cyclical, separated by
hold periods under sustained high levels of constant stress or
strain conditions. The space shuttle represents another example
of a structure that will operate in an environment in which tem-
peratures are sufficiently high to cause degradation of struc-
tural strength. For both the reactor components and the space
shuttle it becomes difficult to separate the effects associated

with plastic flow and creep.
1.2.4 Metal Forming Technology

Ductile metals may be rolled, hammered, bent, or extruded
even at relatively low temperatures. These processes generally
require considerable energy. Therefore accurate methods for de-
termining the behavior of solids, under the conditions severe
enough to cause permanent changes in shape, are significant in

attaining increased fabrication efficiency.
1.2.5 Nonisotropic Materials

The treatment of the nonlinear behavior of structures con-
structed of homogeneous orthotropic or layered composite materi-
als may appear to be presumptuous in view of the many remaining
unanswered questions associated with homogeneous isotropic mate-
rials. Nevertheless such materials exist (more so than the ideal-
ized materials considered) and are being used with increasing fre-
quency in aerospace applications. It would be unrealistic to ne-
glect the special problems posed by such materials when developing

a general purpose plastic analysis capability.
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2. PROGRAM DEFINITION

2.1 General Discussion

Developing a comprehensive finite element program remains a
subjective undertaking since it invariably depends on the analysts
designing the program, the computer hardware available, and the

resources allocated for the project.

Many of the basic criteria for both linear and nonlinear
general purpose codes are similar. However, given that the ap-
propriate theories from structural mechanics have been imple-
mented, the distinguishing features of a nonlinear program are
twofold: 1) displacements, stresses, elastic-plastic strains,
etc., must be stored for subsequent use in succeeding load steps,
and 2) the solution is of the repetitive type so that calcula-
tions that are performed once for an elastic analysis must be re-
peated in a nonlinear analysis. The latter consideration is most
critical because while it is true that nonlinear analyses have
reached the stage of maturity such that almost any problem can be
solved for a price, the cost for such an analysis can become pro-
hibitive. Consequently, it is incumbent on the designer of a
nonlinear code to minimize the cost of an amnalysis so that solu-

tions to meaningful problems are economically feasible.

For a large comprehensive program, steps towards this end
must be taken not only in reducing computing time (i.e., use of
the central processing unit) but alsc in reducing overhead costs

associated with accessing data on secondary storage devices.

The use of an efficient solution algorithm has the most sig-
nificant effect in reducing computer costs associated with CPU

time.

11



After the choice of a solution algorithm has been made, great
care must be taken in coding the key "number crunching" portion of
the code, including the judicious use of machine language routines
for certain operations. Efforts must also be made to perform key
input/output functions in an optimum fashion so that their asso-
ciated overhead costs are minimized. The allocation between
scratch disc storage and primary in-core storage is the main op-
erational decision to be made here. Such features as variable
core allocation enable this ratio to be optimized for a given

problem and machine.

2.2 The PLANS System

The PLANS system, rather than being one comprehensive com-
puter program, is actually a collection of finite element programs
used for the nonlinear analysis of structures. This collection of
programs evolved and is based on the organizational philosophy in
which classes of analysis are treated individually based on the
physical problem class to be analyzed. On the basis of this con-
cept, each of the independent finite element computer programs of
PLANS, with an associated element library can be individually
loaded and used to solve the problem class of interest. A number
of programs have been developed for material nonlinear behavior
alone and for combined geometric and material nonlinear behavior.
Table 1 summarizes the usage, capabilities, and element libraries

of the current programs of the PLANS system. These include:

. REVBY for the plastic analysis of bodies

of revolution

° OUT ~OF -PLANE for the plastic amalysis of built~up
structures where membrane effects

predominacte

12
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Module

OUT -OF -PLANE
(material nonlinearicy)

KREVRY
vnaterial nunlinearity)

SATELLITE

0O-PLANE -MG
(material and geometric
nonlinearicyy

HEX
{material nonlinearity)

BEND
(material vonlivearicy)

Usage

Analysis of builc-up
structures composed of
membrane skins,
stringers, bulkheads

Analysis of bodies of
revolution

Mesh generation, plot
jdealization, data
checking

Same as OUT-OF-PLANE but
includes the effect of
geometric nonlinear
behavior

Analysis of three dimen-
sional solids

Analysis of built-up
structures, includes
bending of sheet material

Table 1

CURRENT CAPABILITY OF PLANS

Element Librar

Family of triaugular membrane
elements, stringer element,
shear panel, beam elewents,
with the following cross sec~
tions: solid rectangular,
solid circular, I-section,
Z-section, L-section,
T-section, hollow rectangular,
hollow circular

Isoparametric shell of revolu-
tion element, revolved tri-
angular element, ring stiffener
of various cross sections

Same as OUT-OF-PLAINL

Isoparametric family of
hexahedra

Family of triangular membrane
elements, ctringer element,
beam element (same cross sec-
tions as OUT-OF-PLANE), higher
arder triangular plate element
(bending and membrane)

Loading

Concentrated forces and
moments at nodes
Distributed edge load on
triangular element
Discributed lateral load on
beam elements

Thermal loading

Azxisymmetric

- Line loading

- Distributed load on shell
elements

Distributed load on revolved
triangles

Thermal loading

Same as OUT-OF -PLANE

Concentrated forces at nodes
Distributed surface load on
a face of a hexahedra
Thermal loading

Concentrated forces at nodes
Distributed edge loads on
triangular plate and mem-
brane elements

Distributed lateral load on
plate and beam elements

- Thermal load

Current Capability

600 members
900 nodes
6 degrees of freedom
per node

600 members

900 nodes

degrees of freedom
per node

o

Same as OUT-OF-PLANE

2500 members

2500 nodes

degrees of freedom
per node

w

Open core - variable num~
ber of members and nodes
Up to 12 degrees of free-
dom per node



* BEND for the plastic analysis of built-up
structures where bending and membrane

effects are significant

° HEX for problems requiring a three dimen-

sional elastic, plastic analysis

i OUT -OF -PLANE ~-MG for the material and geometric non-

linear analysis of built-up structures

Supplementing these is a SATELLITE program for data debugging and

plotting of input geometries.

Developing the programs in this manner afforded some distinct
advantages, particularly in a research environment, since we were
able to keep the individual programs as simple as possible and,
therefore, easily understood and modifiable., Furthermore, in
general, each program follows the same basic flow and each con-
tains many common subroutines. Consequently, once the basic flow
and supervisory subroutines have been established, development
could proceed as parallel efforts with different programs being

worked on at the same time.

It also simultaneously allowed for the development of spin-
off modules for special purpose analysis. An example of this, re-
ported in Ref. 31, is the FAST module for fracture analysis. An-
other special purpose module developed under this concept is
SATELLITE which integrates the input part of the programs with

FORTRAN mesh generation subprograms and input plotting routines,

Another implication of this apprcach also arose in the de~
velopment of PLANS. With the development of each succeeding pro-
gram, new and hopefully better programming techniques were real-

ized. These improvements were implemented in succeeding programs

14



so that continued growth in program capability, generality, and

efficiency was achieved.

Although the programs can be individually loaded it is con-
venient to integrate them into a single system by making each

module callable from an executive program.

A brief discussion of the significant features of several

components of the system follows.

2.2.1 Executive Program

The executive program is a small calling program that uti~
lizes the computer's system to form an overlay structure. How-
ever, for an IBM facility we make use of a PL/1l program called
WIZARD (Ref. 32), written at Grumman Data Systems, that allows
a user to store many program decks on a magnetic tape or direct

access volume.

This system is comprised of three separate collections of

subprograms. These are:

° A source update program to allow a user to selectively

edit and compile a new source program

o An object update program that maintains updated files

of compiled source programs

® A file select program that selectively loads programs

from the object file for execution

While the file select program can accept commands to lcad
individual programs, it can also load groups of programs by simply
supplying a group name that has been previously defined. In addi-
tion, each group definition may contain other group names in its

definition. This feature is particularly meaningful for our
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purposes since each program naturally defines a group, and pro-
grams common to all groups (such as the solution package) are

naturally subgroups.

The modules of the PLANS system are also operational on CDC
computers. However, since PL/1l is unavailable on many CDC facili-
ties, the system described above cannot be used. Consequently, on
CDC machines we have made use of an overlay approach to implement
the executive system. Specifically, use is made of the NASTRAN

linkage editor facility to implement this overlay procedure.

2.2.2 Basic Flow of the Analysis Programs

Modules were developed in the PLANS system that treat mate-
rial nonlinear behavior and combined material and geometric non-

linear behavior.

The modules that analyze material nonlinearities alone im-
plement the initial strain approach which does not require the
stiffness matrix be updated at any step in the analysis so that
the program organization will differ from that for combined geo-
metric and material noniinear behavior. First, we discuss in
detail the basic flow for a typical module in PLANS that treats
material nonlinear behavior alone using the initial strain ap-

proach,

Figure 1 is a schematic representation of the flow of each of
the analysis programs that implement this approach. It should be
pointed out that the program outlined below does not fulfill the
criterion of being general purpose in the sense that it can be
used to perform analysis of different physical phenomena (geo-
metric and material nonlinear behavior) and implement various solu-

tion procedures (tangent modulus and initial strain approach).
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Read Input

Calculate Yield
Load Stresses
and Strains

'

Form Element Stiffness
and Initlal Strain
Stiffness Matrices

:

Assemble Total Stiffness
Matrlix and Load Vector

PLAS

Sclve for Displacements

[K1{8} = {P}

:

Calculate Unlt Load
Stresses and Strains

‘

Solve for Initiail
Yield Load

Return

]

ELAS

Pu—

:

(a) Main Program (b) ELAS

Fig. 1 Basic Flow of Nonlinear Material Anaiysis
Program in- PLANS
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However, it was developed with the intent to implement one solu-
tion procedure for a given problem class in the simplest and most
cost effective manner. In this sense the entire PLANS system and
not an individual module can be considered to be a general pur-

pose program.

As shown in Fig. 1, each module has three major components:
a main calling routine (MAIN), an elastic analysis subprogram
(ELAS), and the plastic analysis subprogram (PLAS). A discussion

of each of these components follows.

-

¢ MAIN

Each individual computer program is controlled by a main
calling program that sets up core allocation for principal arrays
and the data set specifications for auxiliary storage. The main
program then transfers control to subroutine ELAS. ELAS is a
finite element elastic analysis program that performs the elastic
analysis and calculates the initial yield load. Control is trans~
ferred back to the main program, which calls subroutine PLAS only
if requested. PLAS manages the plastic analysis and maintains
control of the analysis until the complete plastic analysis is
performed. By so organizing the program it should be possible
with a minimum amount of change to use PLAS with other available

finite element elastic analysis programs.

° ELAS

Figure 1 shows a block diagram of the computational flow of
ELAS. This program is a special purpose finite element program
for the elastic analysis of structures. Accordingly, its first
major task is to read all input. The input is read in functional

groups as follows:
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. Problem title

. Nodal coordinates and control variables
° Member topology describing connectivity
e Nodal boundary conditions. Single and multipoint con-

straints on the displacements are specified in addi-

tion to fixed or free conditionms.

® Load vector = includes member or nodal load data for
distributed surface loads, edge or line loads, concen-

trated loads, and thermal loads

° Material and section properties — tables of elastic and
plastic material properties and member geometric proper-
ties are set up along with applicable members. Complete
generality has been maintained so that orthotropic mate-

rial behavior can be specified.

Other variables controlling output are also specified. The input
scheme has been written so as to minimize the amount of card

handling for any problem.

During the input portion of the program, externally numbered
nodes and members are converted to intermnally numbered nodes and
members via some internally generated tables. As a consequence
of this feature, nodes and members can be arbitrarily numbered and
new ones can be easily added to an éxisting idealization or the
connectivity (bandwidth) altered with the specification of some
simple card input. In addition, based on these tables, there is
a substantial amount of input checking for the validity of speci-~-

fied nodes and members.

The next step is to form all element stiffness, stress, and

initial strain stiffness matrices. This routine also places the
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elements of the stiffness matrix along with their position in the
total stiffness matrix on a sequential auxiliary storage device.
In addition, the element stress and initial strain matrix along
with some element control variables are placed on another sequen-
tial auxiliary storage device to be used subsequently for stress-

strain calculations.

The total stiffness matrix and load vector are assembled by

sequentially reading the element stiffness matrix and "

stacking"
indices from auxiliary storage and stacking that portion of the
stiffness matrix that fits in core, and then reading it onto an
auxiliary storage device. This process is repeated unti. the en-

tire load vector and stiffness matrix have been formed.

Our basic design philosophy is to make alterations, perform
certain matrix manipulations such as those required for single
and multipoint constraints (see Sec. 3.6), and account for bound-
ary conditions (including applied displacements) on the element
level, and then to assemble these quantities into the master ar-
rays. In this manner we need not make use of a matrix interpre-

tive system to manipulate large matrices.

With the total stiffness matrix and load vector assembled,
the next step is to solve for displacements. Two solution pack-
ages are currently being used for this purpose, both based on the
Cholesky factorization method. Their differences are based onmn
the system used to store the stiffness matrix. PIRATE is based
on partitioning the structure so that the stiffness matrix is ex-
plicitly in block tridiagonal form. The second routine, PODSYM,
is based explicitly on the banded nature of the stiffness matrix,
so that only elements within the lower triangle that lie between

the semibandwidth need be assembled. In addition, this routine
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"packs'" the rows of the stiffness matrix before writing it on
auxiliary storage by suppressing all consecutive zeros. These

algorithms are presented in detail in Sec. 3.7 of this manual.

The unit load stresses are calculated next from displacements.
These stresses are used to calculate the initial yield load, and
this yield load is used to scale the displacements and calculate
yield load stresses and strains. Control is then returned to the

main program.

d PLAS

Figure 2 shows the computational flow of a typical subroutine
PLAS. This program supervises the entire plastic analysis after
initial processing has been carried out by ELAS. The principal

information that is communicated to PLAS is:

® Factored stiffness matrix and unit load vector
o Element stress and initial strain matrices

©  TInitial yield load

® Plastic material properties

With this information, the load is incremented and the re~-
petitive calculations that implement the incremental solution are

performed as follows:

d Add incremental effective plastic load vector including
any contribution from equilibrium correction factor to

scaled vector of applied loads

e Solve for increments in displacements using the fac-
tored stiffness matrix. This involves only a forward

and backward solution of a triangular matrix.
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Increment Load

Add incremental
plastic lcad vector
to scaled permanent
load vector

Solve for increments
of displacements

[K] {Ad} = {ap} + {AQ} + R

J

CALL SICREM

Has the

No

Return
to main

22

max load been
reached?

Yes \

Read new values

for load increment
and determine if an
additional load cycle
1s desired

CALL CYCLE

5

Subroutine SICREM supervises
reading sequential auxiliary
storage devices contalning
element stresses, total
strains, etc. and calculates
increments in stress, strain,
and other pertinent quanti-
ties. The plasticity consti-
tutive relations are imple-
mented. The effective plastic
load vector is formed, includ-
ing the equilibrium correc-
tion factor. Total quantities
are formed by summing incre-
mental quantities. Print
stresses, strains 1f re-
guested.

Calculate "zero" load

stresses and strains and dis-
placements. Find new critical
load and calculate new critical
load stresses and strains.

Fig. 2 Flow of Subroutine PLAS



A Read total displacements from disc storage and add dis-
placement increments to form updated total displace-
ments. Write results on disc storage. Read total ele-
ment (or nodal) stress, strains, plastic strains (shift
in the yield surface when kinematic hardening is used)
from disc storage. Calculate element (or nodal) incre-
ments of total strain, stress, etc., check yield cri-
terion for previously elastic elements (nodes) and un-
loading condition for elements currently in the plastic
range, implement plastic constitutive relations and form
effective plastic load vector. Sum total quantities
with calculated incremental quantities and write on disc
storage to be used as input for the next increment of
load.

o Repeat the above if the maximum load has not been

reached.

When the maximum load is reached, the final effective plastic
load vector is formed and saved. At this point, a check is made
to see if another cycle of loading is desired. 1If not, control
is returned to the main program. If an additional cycle of load-
ing is specified, new plastic material parameters can be read as
input and inserted into the material property tables. Displace-
ments are then calculated with the applied load vector set equal
to zero. Stresses and strains are calculated on the basis of
these displacements. If subsequent yielding occurs in the re-
versed cycle at a load that is opposite in sign to the load pre-
viously computed, then these stresses and strains represent re-
sidual quantities., This is checked next by computing a new yield
load. This calculation involves the solution of a quadratic

equation for each member. One root of this solution represents
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the previously reached maximum load if no new plastic material
properties were input, and the other represents the new yield
load in the reversed direction. This load level is used as a
starting point for the next cycle of loading. The effective
plastic load vector is then added to the applied load vector,

and the sum is used to solve for the new critical load displace-
ments and the corresponding stresses and strains. Transfer is
then made to the beginmning of PLAS in order to increment the load

and proceed as described previously.

2.3 Combined Material and Geometric Nonlinear Analysis

For combined material and geometric nonlinear analysis sever-
al major alterations in the program flow must be made because the
convected coordinate approach to the solution of geometric non-
linear problems requires the reformation of the stiffness matrix
during the imcremental solution process. This flow is presented
in Fig. 3. As shown in this illustration, no distinction can be
made between an ELAS and a PLAS as before. The main program con-
trols the flow previously supervised by ELAS and PLAS. Now there
is a special routine to initialize stresses, strains, etc., where~
as previously all quantities were initialized to be the yield load
stresses, strains, and displacements. Aside from this distinction
the flow of both analyses is similar. Now for the geometric non-
linear analysis, after an increment of load has been applied, in-
crements of displacement are calculated and the geometry is up-~
dated. Subroutine SRAIN is then called. This subroutine super-
vises the elastic-plastic calculations. In addition to calculating
the element stresses, strains, etc., using the appropriate stress-
strain relations, the element stiffness matrices and mechanical

load vector are updated because of the-geometry changes and the
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Read Input

Initialize stresses-strailns
displacements and write
them on auxlilliary storage

Form element
stiffness
matrices

Assemble
total
stiffness
matrix

Solve for
displacement
increments

Read total displacements
from auxiliary storage

and sum with displace-—
ment increments. Write new
total displacements on
auxlliary storage.

i

Update geometry

Call SRAIN

Form updated load
vector

the max
load been
reached

Return

Yes

No Read new plastic

material properties
if desired. Reverse
load increment.

Is

the stiffness

matrix to be

updated
(?

Subroutine SRAIN supervises the
calling of appropriate element rou-
tines to calculate increments of
stress, strain, and other pertinent
quantities. The plasticity consti-
tutive relations are implemented
and the element stiffness matrices
updated and stored on auxiliary
storage. The effective plastic
load is formed, including the equi-
librium correction factor.

Fig. 3 Flow of Program for Combined Material and
Geometric Nonlinear Behavior 2%



presence of initial stresses. These quantities are stored on
auxiliary storage devices and control is returned to the main
program. The new incremental load vector, including plastic and
geometric effects as well as the "equilibrium correction," is
then formed. If the maximum load has not been reached, control
returns to point A or B 1in the flow depending upon whether
the stiffness matrix is to be updated and refactored. TIf the
maximum load for this load sequence has been reached new plastic
material properties (and possibly a new load vector) are read and
the new load increment is calculated. For reversed loading there
can be no elastic scaling to the next yield load since the geome-
try changes make the unloading a nonlinear problem. Consequently
the load sense is reversed, and the load is incremented to the new

minimum load.

3. THEORETICAL APPROACH

This section describes the theoretical basis of the programs
of the PLANS system. 1Included in this section are the formula-
tion of the governing matrix equations that account for material
and geometric nonlinear behavior, the description of the plas-
ticity theory implemented in the programs, and some computational
aspects of the programs. Much of the material in this section is
explained in great detail in the authors' previous NASA contractor
reports (Refs. 6, 8, and 30), and so the discussion in this sec-
tion has been restricted to a review of the highlights. The

above-mentioned reports may be referred to for additional details.
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3.1 Governing Matrix Equations

The approach used by the authors in several investigatioms,
spanning a number of years, for the plastic analysis of structures
(Refs. 6, 8, 9, 10, 26, and 30), incorporates the initial strain
concept for the treatment of material nmonlinear behavior and the
incremental moving coordinate formulation for the treatment of
geometric nonlinear behavior. As such, this is the approach im~
plemented in the programs of the PLANS system. An extensive pre=:
sentation of the governing equations for this approach is pre-

sented in Ref. 8 and for completeness is reviewed below.

If the increments in displacements (AU}, linear total

strains (Aeij}, and rotations {Amij} are related to the nodal
generalized displacements {AUO} via the following matrix rela-

tions
(AU} = [N](AU,)
[Aeij} = [W]{AUO} (1)
(hog ;) = [@1(AU )

and Ei. is some initial stress state, then the matrix equation

governing the nonlinear response of a structural finite element
to some arbitrary increment of loading can be written as (Ref. 26)
(k07 + (K Dytav ) = (AP} + (aQ) + (R) )
- o o’ o o
where

(k7] = conventional stiffness matrix obtained from the
linear component of the strain~displacement rela-

tions
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and

28

geometric stiffness matrix, formulated from the
nonlinear terms of the strain-displacement rela-
tions. It can be considered as an additional
component of the stiffness matrix that accounts
for the effect that the presence of initial

stresses have on subsequent deformations.

increments of generalized nodal forces

increments of the effective plastic load. If an
assumption is made on the plastic strain distribu-

%
tion within the element then {AQOJ = [k ]{Aeo},

initial strain stiffness matrix used to account
for the presence of initial strains, and reflects
the assumed distribution of both the total and

plastic strains within the element
increments of nodal or element plastic strain
vector of residual forces that may exist because

of equilibrium imbalance at the end of the pre-

vious load increment,



(rQ) = | [WIT(E](ae Jav
\

Equation (2) is derived by using a moving coordinate system
fixed to the body. It is valid for large elastic~plastic deforma=-
tions, provided the appropriate nonlinear terms are retained in
the strain~-displacement relations and the total strain increment
can be simply decomposed into elastic and plastic components.
Additionally, proper transformations from the previous to current
coordinate systems must be used so that the changes in orienta~
tion and volume of the elements are accounted for (Refs. 26 and
24). 1In its usage herein, consideration is restricted to small

strain, moderate rotation problems.

3.2 Solution Procedures

3.2.1 Small Deflection Problems {(Material Nonlinearity Alone)

The matrix formulation presented in Eq. (2) is used for this
case with the [kl] matrix deleted. The individual element
stiffriess matrices and load vectors are assembled to form the
global stiffness matrix. Boundary conditions and single and
multipoint constraint conditions are reccgnized at this stage and
accounted for at the element level, thereby removing any further
consideration of these conditions on the larger assembled coef-
ficient matrices. At this stage we have
i+l

i+l

k01080, ) + (st + (R ) 3)

(AP}

Here the superscripte i and i+l refer to the current and
next load step. Since the exact wvalues of the plastic strain in-

crements for the next load step are not known, we make use of
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values from the current step. The equilibrium correction is
based on total equilibrium at the end of the current load step
and is used in every increment. Note that the stiffness matrix
need never be reformed after the first increment since the non-~
linearities appear as a component to the load vector. Conse-
quently, the stiffness matrix can be factored once for the ini-
tial load step and used repeatedly throughout the incremental
solution. A significant reduction in solution time (factors of
3 to 21) have been realized depending on the size of the
problem and the bandwidth using the previously factored coeffi-~

cient matrix. The solution procedure is as follows.

A specified "unit" load is applied to the structure and cor-
responding stresses and strains are determined. Since the re-
sponse is linear up to initial yield, a critical load for which
plastic deformation first occurs at a node (or element) can be
calculated from the unit load stresses. From this level the load
is incremented to a maximum value with new increments of dis-
placement, plastic strain and stress calculated at each step.

Total values are obtained by summing incremental values.

If the load is reversed for a cyclic analysis, new material
properties data may be read in at this point. A new critical
load for which yielding begins in the reverse direction is cal-
culated, based on elastic unloading to this point. Procedures
for determining this load and initial yield load are presented
in Refs. % and 8. The critical load for reversed loading may
occur before all the initial load is removed because of the pre-
sence of residual stresses and the existence of the Bauschinger
effect. The load is then incremented from the new critical value
to a specified maximum (minimum) value. This procedure is re-

peated for as many half cycles as desired.
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3.2.2 Combined Material and Geometric Nonlinearity

Again the formulation presented in Eq. (2) is employed. The
load is applied in small increments from the initial unloaded
state. At the end of each increment, new increments of deflec-
tion, stress, total strain, and plastic strain are calculated.
Total quantities are summed and appropriate transformations from
previous to current geometry are used to calculate such quanti~
ties as the initial stresses, Eij' The geometry of the struc-
ture is updated in each step. Again the plastic strain incre-
ments used for the next step are those calculated at the end of

the current step.

Now the element contributions are assembled and the system
of linear incremental equations is solved for the next load incre-
ment. For the large deflection problem, the most time-consuming
feature is the reassembly of the stiffness matrix in every incre-
ment, and the necessity of resolving the equations. To minimize
this time-consuming feature it becomes convenient to treat the
large deflection terms as effective loads and not reform the
stiffness matrix [ko] in every increment (Ref. 26). We can then

rewrite Eq. (2) as

€7 0au 1 = - et itau )+ (ap )T 4 a0t + r )Y )
Now the product of the geometric stiffness times the current dis-
placement increment is treated as an 'effective load." This is
less accurate than the 'tangent modulus" formulation but the
"equilibrium correction'" prevents excessive drifting of the solu-
tion. The stiffness matrix [ko] is updated every M steps

(M > 1) where M is input by the user. Additionally, if large

nonlinearities or instability are anticipated by the user, he may
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switch to the tangent modulus approach for geometric nonlinearity
at any point in the analysis. After this specified load, the
stiffness matrix [k] = [ko] + [kl] is reformed and resolved for

every increment of load.

The soluti on process is repeated until the maximum specified
load is reached or structural failure occurs. 1If cyclic loading
is specified, the load increment is reversed at the maximum load
(a new magnitude may be input), new material properties data are
read, as well as new values of M and the crossover load for
tangent modulus treatment of geometric nonlinearities. The in-
cremental process is then repeated until the new maximum (mini-
mum) load is reached and the procedure is repeated for as many

load cycles as desired.

3.3 Plasticity Relations

This section considers appropriate incremental plasticity re-
lations to determine values of stress and plastic strain developed
during the history of loading. In PLANS use is made of Hill's
yield criterion (Ref. 33), for an orthotropic material, which re-
duces to the von Mises yield condition for isotropic materials, to
predict initial yield and obtain the flow rules of plasticity.

The capability of handling both strain bardening and ideally

plastic behavior is included in the program.

3.3.1 Matrix Relations =~ Strain Hardening

We can, for small strain increments, decompose the total
.. T . . e .
strain increment f{Ae }  into elastic {Ae } and plastic {A¢€)

components, as

(0el} = (2e°) + (2 g) (5)
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The elastic strain increments are related to the stress incre-~

ments {Ac} by

(2e®} = [E]" {a0) (6)

-1 . . .
where [E] is an array whose elements are combinations of

elastic material constants.

A linear incremental constitutive relation between plastic
strains and stresses can be written from all of the popularly
used flow theories of plasticity. This relationship can be

represented as
{ae} = [C]{Ac) (7)

Therefore, substituting Eqs. (6) and (7) into Eq. (5) we can write

(a6} = [R]1aeT) (8)

where

~1

[R] = [E] 7 + [C]

The elements of the matrix [C] depend on the current state
of stress, yield condition, flow rule, and hardening law. Exam-
ples of the explicit form of the [C] matrix are given in
Tables 2 and 3. In PLANS the yield condition is based on Hill's
yield criterion for an orthotropic material (Ref. 33), and the
hardening law is based on the Prager-Ziegler kinematic hardening
theory (Refs. 34, 35, and 36) modified for orthotropic material
behavior. Both linear and nonlinear strain hardening options
are available with input parameters determining which is chosen.
To minimize input requirements for nonlinear hardening, a Ramberg-
Osgood (Ref. 37) representation of the stress-strain data is

used
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Thus, for this representation of the stress-strain law, for
an initially isotropic material two additional material parame-~
ters n and 0g.7 are required for the plastic analysis. For a
Ramberg-0sgood representation of an initially orthotropic mate-
rial these two quantities are required for each principal mate~
rial direction and for each of the shear components. For a three
dimensional problem this means that six sets (three for the nor-
mal components and three for the shear components) of stress-
strain data must be specified. The flow rule is based on

Drucker's postulate (Ref. 38).

3.3.2 Matrix Relations ~ Perfect Plasticity

The treatment of multiaxial elastic ideally plastic behavior

required that the following conditions be satisfied:

e The stress increment vector must be tangent to the

loading surface

o The plastic strain increment vector must be normal to
the loading surface, where the loading surface is the
representation in stress space of the initial yield
function or the subsequent yield function after some

plastic deformation has occurred.

1f f(oij) represents the yield surface, the first condition

can be expressed analytically as

8&. dog.. = C , (10)
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Table 2 1Isotropic |C| Matrix for Various Stress States
PLANE STRESS
m2 s etri =a -1
1 ymm c my o= ey Zﬂy
1l 2 e
[cl 5 ™™y m; my, = oy - 20,
m m m2 = 37
3™ ™M 3 M3 = PTxy
D"lc2 = yleld stress a = -
2% » %7V S N R S R
yleld function: f = ;2 + 32 - oo, + 3;2 - 02 =0
X y Xy Xy
unloading criterion: mldc + m2do + m3dey <0
THREE DIMENSIONAL
2 _ = 1¢77 p
m1 m]. = ox - p((y + nz)
m,m m2 symmetri R I
1 2 ymm c m2 = ny \ r\x)
m,m m.,m m2 m, = c_ - 4(¢c_ + a
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D = El c = yield stress P = -
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= 2 - -2 - - .2
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yield function: f = 4 4 z X4 L 31-2 + 3-rz + 3-r2 S 0
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+ m,d+ < 0

mldox + rnzt:loy + m3dcxz + m4dey + "'Sdez 6d7yz
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2 . -
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1 2 -
1 == = 3~
[€h=5]mm ™ m = 3y
m,m M, 0 m2 m, = 37
371 372 3 3 Xz
D = 5 co , o_ = yield stress , Uij = Oij T i
yieid function: f = 'c-r‘z + 3?2 + 3:2 - 02 =0
x Xy Xz o

adi 1 ~d e
unloading criteria: m]_dcx + m2d-rxy + m3d-rxz <0
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yield function:

unloading criterion:

36

Table 3 Orthotropic

D = c(mi + m2

yield function:

unloading criterion:

[Cc]

PLANE STRESS

Matrix for Various Stress States

symmetric wy = 2(G+H)0x - 2Hcy

2 . -

m, m, = L(F+H)oy 2H0x

m m2 = 4NT

2™3 3 M3 = xy

m, = -2Foy - 2Gox
m2
3, 2 -

+ 5 m4) » O35 7 943 a5

£ = (GHI)G2 + (FHH)o2 - 2Ho 9. + 2Ni2, = 1
x y X'y Xy

mldoX + mZdOy + m3dey < 0

THREE DIMENSIGNAL

2(G+H)ox- 2Hoy

- 2G0z

2(F+H)cy - ZFoz - ZHGX

2(F+G)o, - 2Go_ - 2Fa

41
yz

4Mv
zZX

+H{os. ~ o Y2 4 217 + 2Mr__ + 2NT
x y yz zx X

+ m6dTXy <0

f 2
my my =
m 2 tri =
mym, my symmetric m, =
m,m m,m m2 m, =
173 273 3 3 "
m,m m,m m,m m2 m, =
174 274 374 4 4 -
m m m 2 =
M5 Wy T3Wg WMy W T =
myme m,me mymg m, me m me me m, =
m2 m2 m2
- 2 2 L 5.6 -
D = c(m1 +m, +my+ 5 + 5+ 2) Oi5 = 9
- =2 - = .2
£ = (o, -o,)% + (g, - o
mldoX + m2doy + m3dgZ + mAdTyz + desz
GHH = 1/X% , mF = 1/¥2 , PG = 1/2°
2L = 1/R2 , 2M = 1/s2 , 2N = l/T2
X,Y,2 are yield stresses in tension in principal directions
R,S,T are yield stresses in shear in principal directions

y
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and provides a linear relationship among the components of stress
increment. Thus, one of the components may be expressed in terms

of the others. In matrix form,'this can be written as
{Ac} = [E]{Ag] (11)
where {Ag} represents the independent stress components.

The normality condition provides a linear relation among the
various components of the plastic strain increment. This condi-
tion is derived from the flow rule and provides a linear rela-
tionship in which each of the components of plastic-strain incre-
ment can be written in terms of any one component. This rela-~

tionship may be represented in the following form
(Ae} = [E](A€] (12)

where {Ae)} 1is the independent plastic strain increment.

o

The independent increments of stress and plastic strain can
be combined and written as the components of a vector, {Aw}
(see Ref. 8), so that Egqs. (11) and (12) can be written, respec~

tively, as

{Ac) (E1{ 2w}

(13)

(Ae} = [E]{A0)

Examples of the explicit form of [E] and [E] are given in
Tables 4 and 5. Combining the above equations with Egs. (5) and
(6), we can form the following relation for the independent

quantities

-1
(Aw} = [E71 {nel) (14)

where
(E°] = [E]7ME] + [E]
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Table 4 Isotropic {E] and [E] for Various Stress States

PLANE STRESS

0 -my -, 1 0 0
[E] = O 1 0 ,  [E] = |uw 0 0
0 0 1 m, 0 0

3
1l

1 (cy - 30,0/ (o - 30.)

8
It

9 3—rxy/ (ox - %oy)

THREE DIMENSIONAL

0 : -m, -my -m, -mg -mg (l ; 0 0 0 0 O
O | m2|
0 : ~ m3:
= t I ’ [E] = ' 0
0 m
| 4
0! !
: 5
)
O "6 |
= -1 = -1 N
my 9y 2(0y + o, ) m, = (o s(c. + o, VR m
- 2 3 -
my = (\oz 2(0X + Oy )//ml s m, = BTxy/ 1
mg = 37 z/m1 ;W 31 z/m1

0 -my -m, 1 0 0

(E] = [0 1 0 , [El=]m 0 o0
0 0 1 m, 0 0
m = 3'rxy/ox , m, = 37 Z/Ox




Table 5 Orthotropic [E] and [E] for Various Stress States

[E |

PLANE STRESS

0 -my -m, 1 0 0
[E] = |o 1 0 , [El=]m;, 0 0
0 0 1 .mz 0 0
m, = {(G+H)c - Ho ) //;(F+H)o - Ho
1 \ y x/ 7\ X y
m, = 2LTxy,/'\(F+H)ox - Hoy)

THREE DIMENSIONAL

0 : -m, -my -m, -mg  -m 1 : 0O 0 0 0 O
. '
0 , m, 4
'
0 : m3:\\\\
= [ I ) [E] = \ 0
0 : mA:
0 |
] m5|
[} t
0 | M o
_ _ _ _ _ _ v
m, = (G+H)ox Ho Go ; m, \(F+H)o Ho Foz>, my
m, = \(F+G)oz ~ Go_ - Foy),/’ml 3 my, = ZLTXy/ml

2

G+H = 1/x s H+F = 1/v s F4+G = 1/z2

1/s2  ,

M 1/12

2L

i
=
S~
w

X,Y,2 are yield stresses in tension in principal directions

R,S,T are yield stresses in shear in principal directions
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These relations are used with Hill's yield criterion for ini~
tially orthotropic behavior which reduces to the wvon Mises yield

criterion for initially isotropic materials.

3.4 Hardening Coefficient

One of the unresolved questions in the use of the kinematic
hardening theory of plasticity (Refs. 34, 35, and 36) is the
definition of the hardening coefficient, c¢, (appearing in [C],
Tables 2 and 3) under multiaxial stress states. This is espe~
cially true for problems involving nonlinear hardening under
cyclic loading. Several definitions have been proposed by the
current authors (Refs. 6 and 8 ) and successfully used for ini~
tially isotropic material behavior. An extension of this defi-
nition for initially orthotropic behavior based on Hill's yield

criterion has been recently proposed (Ref. 39).

Before discussing the hardening coefficient, let us first
rewrite the basic equations required for a plastic analysis using

kinematic hardening.
First, we need a yield condition
f(cij) =0 (15)

Hill's yield criterion for orthotropic materials (Ref. 33),
which reduces to the won Mises yield condition for isotropic

materials, is used in PLANS

2

_ _ 2 _ _ 2 _ -
f = F(oy - oz) + G(OZ - cx) + H(oX - Gy) (16)
+ 21T+ MFL. 4+ NS = 1
yz zX Xy

where
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—% =G+ 2L = 33
X R
S-mF M=
Y S
J? = F4G 2N = lf
Z T
Here dij = Oij - aij with aij being the components of the

shift in the yield surface and X,Y,Z are the yield stresses in
tension in the principal directions of orthotropy and R,S,T are
the yield stresses in shear with respect to the principal axes.
For initially isotropic materials this reduces to the familiar

von Mises yield condition

- _ 2 -  _ 2 - -2
% " %% %y T % ~ %x
£f=\"" + ( ) +{ i
(17)
+372 +372 4+37%2 - 44 =0
Xy vz zZX )

with o, equal to the initial yield stress in tension.

Stability requirements for use of Hill's form of the yield
surface, i.e., ensuring that it remains a '"closed ellipsoidal"
surface, require that the following criteria must also be satis-
fied by the yield stresses (Ref. 40)

2

F11Fp9 = Fy9 > 0
2

22F33 = Fp3 >

2
Fy3F1) = Fgp > 0

F 0 (18)

where
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Fi1 = i? P2 T 2 F33 = 2
Fyq = -%(le- + xl—z - ;152)
Fo3 = '%Qii + iﬁ - i?)

If Eq. (18) is not satisfied by the yield stresses then some other
yield criterion must be chosen (see Ref. 40, for example) and imple~-

mented in the code. This occurs frequently for composite materials.

The flow rule used in PLANS is based on Drucker's postulate
(Ref. 38)

d€.. = dA ao_ (19)

where dA 1is a positive scalar quantity. For kinematic hardening

it is given by

>
1 aomn domn
dh = ¢ TSE N F (20)

- )
\8oy 1 /N0y

and c¢ 1is the hardening coefficient to be defined. The incre-
mental shift in the yield surface daij is assumed to be along
a radial line through the center of the yield surface as postu-

lated by Ziegler (Ref. 3€)

da,, = du(os, - a..) (21)

and
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dy = = S (22)
(Uij S-

In evaluating the terms of Eqs. (19) through (22) for sub-
sets of the nine dimensional stress space, all terms should be
retained in the yield function. Symmetry and setting stresses
identically to zero should be done after the expressions have
been obtained. The resulting expressions are termed complete

kinematic hardening.

3.4.1 Kinematic Hardening Coefficient for Imitially Isotropic
Materials
If we evaluate ¢ for a uniaxial state of stress and re-
strict ourselves to initially isotropic materials, using Eqs. (19),
(20), and (17), we get
P

: (23)

0=
I

N[
lo..

[aB

If we generalize to a multiaxial state of stress, we may

. P . . ~
consider ¢ and ¢ to be effective quantities o and eP

[Eq. (9)] where for an isotropic material

2 2 2
2 /OX - O /o - Oz\ 0, - Ox\
(24)
2 2 2
+ 3Tyz + 3TZX + 3Txy
and
~P P P
de” = J2/3 deijdeij
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Note the difference in definition of the "effective stresses,"

o and the yield function of Eq. (17).

If we use a Ramberg-0sgood representation of the stress-
strain curve and consider the nonlinear term to represent the

plastic strain contribution, then

~P n-1

1 3 de 3 |3n o
cT2 T2 \E|S (23)

d 0.7

or for linear strain hardening
E
P 1 - =)

1 _3de 341\ E. o6
c 2 .~ 2 |E E._JE (26)

where ET is the tangent modulus.

Various methods of choosing an appropriate value for ET/E
from a stress-strain curve have been suggested (Ref. 41, for ex-
ample). The use of linear strain hardening can lead to substan-
tial underpredication of plastic strains, in the range of strain
where the material does not have a linear stress~plastic strain
relationship. In turn, this can lead to serious discrepancies

if the response to cyclic loading is desired.

To determine the values of n and 9.7 that best fit the
actual stress~-strain data, the method suggested by Ramberg~0Osgood
can be used if the strain range is sufficiently small. For this
case

log(17/7)
log(oy 7/99 . g5)

n=1+

The quantities 99 .7 and 0y.g5 are the stresses at which

the curve has secant moduli of O0.7E and 0.85E, respectively.
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If the strain of interest is sufficiently large so that the pa-
rameters as determined by the preceding process do not fit the
curve well, then a power law representation to fit the actual

data can be used

+ pa" (27)

Now having determined P and n to "best fit" the experi-
mental data, the value of n 1input is that calculated, and the
value of 9.7 input is derived by equating the nonlinear terms

of Eqs. (27) and (9), i.e.,

3 .n=-1

%.7 T <7E§

For cyclic loading the problem of how to determine ¢ for
load reversals subsequent to the initial loading is even more
vexing especially for nonlinear hardening. For linear hardening
a procedure for selecting the value of ¢ and new yield stresses
for succeeding cycles is suggested in Ref. 41, For nonlinear
hardening it is desirable to reproduce the actual hysteretic
stress-strain curves obtained from test data. Morrow (Ref. 42)
details extensive cyclic tests on isotropic metals to determine
the cyclic and hysteresis stress~strain curves. He has found
that both the cyclic and hysteresis curves may be well repre-
sented by a power law similar to the Ramberg-0Osgood curves.
Based on his findings, we have incorporated into PLANS a harden-
ing coefficient for load reversals following the initial wmono-

tonic loading defined as
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1_ 34 _ z{s_n & “'1] 28)
c 2 q 21 7E 200.7
where we now define G to be
% * 2 % * 2 * * 2
~2 (Ox B Uz\ fcz B 0z\ /Oz ) Gx\ 3 *2 *2 *2
o =\ *\—75 ) +\ T + Txy + 3Tyz + 3TZX
A A .
where Oij = Oij - Gij’ and Oij is the last value of stress at

the end of the previous loading range.

3.4.2 Orthotropic Hardening Coefficient

A generalization of the definition of ¢ for initially
orthotropic materials based on Hill's yield criterion is pre-

sented in Ref. 39. The basic highlights will be reproduced here.

We define ¢ to be

of - of — of _
T OX p Oy ao_ GZ
r_1 " x 1 -y 7. 1 =z
c c. 2f c 2f c, 2f
7 (29)
of _ of of -
. 1 aTxy Xy . 1 aiXZ vz . 1 9T, X
c 2f c 2f c 2f
Xy
where
o (G+H22 | dcx
* Tem? + w12 + 2] a’f
] | “%x
o = (F+1) doy
y 2 2]

[ 2 P
l(F+H) + H +F ] dey
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_ (F+G)2 dcz
€z = 2 2 P
(F4+G)" + F~ + G dez
dey dTyz dex
Cc = 2 s - 2 3 Cc = 2
Xy va dyP zx va
Xy vz zZX

This form reduces to the individual uniaxial stress-strain laws

and the initially isotropic case given in Eq. (23).

For a linear strain hardening approximation we use

/ .
. (1 - Eg /EX)
X

de ) E; (ETX/EX>

<P (1 - Eq /Ez)
—z _ 1 z_
dcz E, (ETZ/EZ>

P ‘1 -¢. /G
dyyz _ 1 K : TXE yz>
dr _ ~ G G.. /G

VZ vz \ Tyz yZ

where E E etc., are
'];X’ T. > ]
ponent direction.

stress-strain data we use

N\

P (1 - E_ /E_]
de _ —];- \ TV y-
d T E E.. /E

% y < Ty/ ;j

(1 -

anF (1- ¢ /ny>

xy _ _1 Xy (30)
dt G (G /G )

Xy Xy TXy Xy

P 1 -G /G
drsz . L ( sz ZX>
dex sz (GTZX/sz>

specified by the user for each com-

For a Ramberg-0Osgood form of the uniaxial

n -1
P . (FrceH) ~21
d€x _ 3nx o 2/3 G+H o
do 7E 00.7
X

n ~1 (31)
deP 3n ,/ 2/3 (FGHH) 02
¥ _ _Y F+-H
doy 7Ey 00.7y
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P [ J (F+G+H) ~21 2
dez _ 3nZ 2/3 10 o
dcz 7Ez 70.72
_nxy-l
&P sn_ [ [ 23 ) 2
XY _ Xy 2N
dey 7ny T0.7x
: y o (31)
n -1 (Cont.)
] —= 1 YZ
of o [ [ 25 EEER 7
Yz _ yz 2L
dt ” 7G z TO 7
y y | lyz
nzx-l
P /’ (F+G+H) ~2]
dvzx _ 3nzx L 2/3 i o
dex 7sz T0.7
| ZX
where
~2 3 1 _ 2 ) 2 ) 2
o~ = 7 (FIGHD) [F(oy GZ) + G(cZ OX) + H(oX Uy) (32)

+ 2LT2 + 2MT2 + 2NT2 ]
yz zZX Xy )

is the effective stress for initially orthotropic materials. Now
etc., are specified b e er r
0> 00‘7x’ ny’ 00_7 s C., pec y the us for each

component direction?

For cyclic loading, we define o to be

2 2 2
~D 3 * % * * * *
o = 5 (PTG F(cy - cz) + G(cz - ox) + H(cX - oy)

(33)
*2 *2 *2

4+ 2Lt + 2M7 + 2NT
vz ZX Xy
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where

o) A
Gij =045 " 04 3 (34)

Data for orthotropic cyclic loading is seriously lacking. If the
representation given by Eqs. (33) and (34) for the effective stress
is deemed valid then 00.71. should be set to twice the measured
monotonic value, for load reversals after the initial loading range.
Additionally, at the end of each half-cycle of loading new plastic
material properties may be input so that each hysteresis loop may

be accurately represented.

3.5 Unloading Criterion

At times, due to nonproportional loading or other reasons,
local unloading occurs even though the applied load is increasing.
The unloading criterion, which is checked in the program for every

load increment, is given by

of do,. > 0 for loading or neutral loading
o0, . ij =
1]
of .
do,., < O for unloading
Boij ij

The values of doij used in this calculation are obtained from
the "elastic'" stress-strain relations for that increment. They
are the actual dcij if unloading is detected. 1If the unloading
criterion is not met, however, the doij values are determined
from the plasticity constitutive relations. When unloading is
detected at a point, all further stress and strain increments

are elastic until reloading is detected using an appropriate

yield criterion.
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Specific relations for the unloading condition are shown in

Tables 2 and 4.

3.6 Single and Multipoint Constraints

It is the philosophy of all the programs of the PLANS system
to perform all matrix operations on the element level rather than
on the assembled global matrices. Thus, element stress and
strain recovery, load vector calculation, and boundary and multi-
point constraint operations are carried out with respect to small
matrices or vectors that readily fit in primary storage. In
this manner, with the exception of the solution of the global
stiffness equations, matrix operations can be accomplished with=-
out the aid of a matrix package for large scale matrix opera-

tions.

Accordingly, single and multipoint constraints are satisfied
on the element level before assembling the total stiffness matrix.
This can be illustrated by first writing the element influence

coefficient equation as

(£) = [KI,) - [k 1(e) (35)

where
{£f} 1is the vector of nodal generalized forces

{A } is the vector of nodal generalized global dis-
placements

{e} 1is some initial strain state

%
and [k], [k ] are the element stiffness and initial strain

matrices.
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This equation can be partitioned into an analysis set that
contributes to the total stiffness matrix and a reaction set that

contributes only to the calculation of nodal reaction forces.

In PLANS, the reaction set for single point constraints
arises from fixed node points or nodes that are given a pre-

scribed nonzero generalized displacement component.

Accordingly, Eq. (35) becomes

£ kK .k a K
a aa , ar Ag a
o) = |mmm—cnmaa - - |-z1 {e} (36)
£ k__ |k AT K
T ra ! Trr g r
where
T} = [k ]2
(£,) = [k, 0087 (37)

contribute to the total matrix equations with the load vector

consisting of
A r *
(£,) = (£,) - [k, J(a0) + [k, 1(e)
and the reaction forces are
a r *
(£.) = [k 1007) + [k 10a0) = [k ](e]

The above procedure is accomplished within the program without
explicitly forming the partitioned matrix by making use of an
element location vector that is formed when the boundary condi~

tions are initially specified. This vector is of the form
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<= < 0J ? (38)

where the zeros appear for fixed degrees of freedom, n,, nj,
are associated with degrees of freedom that are free, and -m,

indicates an applied displacement component.

The use of the element location vector is demonstrated sym-

bolically by placing the vector as shown below

{ 0 n. nj ~ml .}

k11 Ko K3 Ky 0]
k21 k22 k23 k24 e e e e ng
k31 k32 k33 k34 e e e e nj
k41 k42 k43 k44 Y | Rt

Then all intersections of the O, “m, Trows and columns in-
dicate matrix elements that are in krr and the intersection of
0, ~m, with the n's indicates matrix elements that are in kra

or kar' The intersection of the n's denotes elements in kaa
The indices n, nj denote the actual row-column location in the

total stiffness matrix of the matrix element to be assembled. 1In
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practice however, the total stiffness matrix is assembled in a
one dimensional array so that n,, nj are used to calculate a
stacking index to relocate the matrix element in the one dimen-

sional storage array.

A
The vector fa is also assembled into the total load vector

using #£. In this case all elements adjacent to O, -m, are in
N
fr and those adjacent to n, are in fa and are, therefore,

added to the "nl location of the load vector.

The programs of the PLANS system implement a multipoint con-

straint capability of the form
N
d %
6y = ). a0, (39)

d .
where 54 is the 1th dependent degree of freedom, aij are

prescribed coefficients, and 6j are a set of independent
degrees of freedom.

Equation (39) can be used to form a transformation matrix
which contains the pertinent a,. and maps the element displace-

1]
ment vector {Ag} which contains dependencies to a set contain-

ing only independent degrees of freedom.
Thus,

{AgJ = [T]{Ag) (40)
from which Eq. (35) becomes

(£) - [KI(E) - [ (e) (41)
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where

= [T1T(f)

~

th

—
|

[T1(kI[T]

W
I

(%77 = (717K

Again the procedure is accomplished without explicitly form-

¥ ~ e
ing the transformation matrices or {f}, (k], [k ]. The location
vector is used as before in conjunction with a dependency vector

and three tables as shown in Fig. 4.

_ -
FO fixed 0

L | L,

0 dependency dy >

NDOFR COEFR
i i i
"k 431 d
n
1 aio dy

Fig. 4 Assembling with Multipoint Constraints

The dependency vector contains zero entries for all indepen-
dent displacement components. All dependent displacement compo-

nents are indicated by a zero in the appropriate location in <#£.

"di"th location of three

The index in £ points to the

d
tables. The first gives the degree of freedom of the first in-

dependent displacement component in Eq. (39) and the second gives
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its associated coefficient. With this information, the matrix
elements in [k] associated with the dependent displacements are
appropriately multiplied by aij and then assembled according to
n, in the same manner outlined for single point constraints,

The last table contains an index that points to the location of
the aij and n, for the next independent pair in Eq. (39). In
this case, the assembling operation continues as before. A zero

entry indicates the end of this dependency relation.

3.7 Equation Solver

Two solution procedures are employed in the PLANS system for
solution of the matrix equations. They are called PIRATE and
PODSYM. PIRATE uses a solution algorithm based on the Cholesky
decomposition scheme and relies on the fact that the matrices are
positive definite and symmetric, and are explicitly in block tri-
diagonal form. Because the matrix must be in block tridiagonal
form, for the most efficient storage allocation, the matrix must
be partitioned. As a result, all the nodes in each partition
must be specified and at any one time at least one diagonal and
one off-diagonal block must be in core. Only the REVBY module
of PLANS uses PIRATE because of the tight banding possible in
most axisymmetric shell and body of revolution problems. In ad-
dition, at most, REVBY considers two dimensional meshes of ele-
ments which are relatively easy to partition. A detailed de-

scription of the PIRATE algorithm is presented in this section.

The second solution procedure, PODSYM, is used in the re~
maining modules of PLANS. This solution package requires the
system of matrix equations to be banded, positive definite and

symmetric. It, too, is based on the Cholesky algorithm but since
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this algorithm requires only one row of the matrix to be in core
at any one time, no partitioning is required. Node order must
be specified, however, and should be ordered so as to minimize
the bandwidth and thus reduce solution time. A bandwidth opti-
mizer is available in the SATELLITE program of PLANS for input
data checking and plotting.

3.7.1 PODSYM - Solution of Symmetric Positive Definite
Banded Matrix Equations

PODSYM solves the matrix equation AX = Y where

is a banded positive definite symmetric matrix, X 1s the de-
sired solution vector, and Y is the known right side (load
vector). PODSYM is the user interface and supervisory routine.
It uses the Cholesky algorithm which factors the total stiffness
matrix into LLT (where L 1is a lower triangular matrix) and

then solves a pair of triangular sets of equatioms.

The large positive definite matrices that occur in practical
work very often contain a large number of zero entries and the
program seeks to benefit from the presence of these elements by

modifying the standard Cholesky formulas

Nj

and
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k-1

- - N ;
Lie = |21k = L fi3tkg /by for i>k

j=1
to read instead
k-1 5
e = B - L *efg
j=v(k)
and
k-1
b = |2 s ) 25505 | 7

where pn(i,k) 1is the larger of the leading zeros in the i and
k rows. In this manner multiplication by zero values of Eij
is awided. A flow chart for PODSYM is shown below

PODSYM

[RFACT] [QF30 [QFOR |

ﬁCHOLI

The factorization is carried out by subroutine QFACT which

supervises the storage and data set allocation and subroutine
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QCHOL which generates the lower triangular L matrix. QCHOL im~
plements the Cholesky algorithm to factor the positive definite
symmetric A matrix as the product of a lower triangular matrix
with its transpose

A= LLT

A straightforward argument establishes the possibility of decom-
posing any positive definite matrix in this fashion. Once L
has been obtained, it is not difficult to solve the system of
linear equations AX = Y by calculating Z as the solution of
the lower triangular system IZ =Y, and then X as the solu-
tion of the upper triangular system LTX = Z. The forward solu-
tion (LZ = Y) 1is accomplished by subroutines QFSOL and QFOR
and the back solution (LTX = Z) by subroutines QBSOL and QBAC.
Before the call to QBSOL, subroutine REVERS 1is called, which re-~
verses the rows of L so that the last row becomes the first
row, etc. This is accomplished in order to sequentially access

LT during the back solution.

The above algorithm is noteworthy for its assured stability
and general efficiency. It is possible to carry out an error
analysis of the procedure as it is represented on a digital com-
puter. Such analysis shows that the computed L matrix satis-
fies an equation of the form

A+ E = LLT

with bounds on the elements of E which show that E 1is small
compared to A. The effect of rounding errors made in the sub-
sequent solution of I1Z =Y and LTX = Z may then be taken into
account by (implicitly) introducing an additional perturbation F
into A, and it is then concluded that the computed solution XO

exactly satisfies the equation
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(A+E + F)Xo =Y

Since E + F can be shown to be small, one would like to infer

that Xo is almost an exact solution of the original equationms,
A

deed warranted.,

is too nearly singular, such a conclusion is in-
But if A

sult can be guaranteed, and XO may be far from the mathemati-

and unless

is very ill-conditioned, no such re-

cally correct solution; in this event single-precision computa-
tion will not suffice for the calculation of an accurate solution
and since the solution will be very sensitive to small errors in
A,

yield satisfactory results unless

it is unlikely that even a high-precision computation will
A and Y are known (and sup-
plied) to more than single-precision accuracy. The PODSYM sub-
routines make a fairly realistic attempt to detect and report

pathological conditions of this sort.

3.7.2 PIRATE ~ Solution of Symmetric Positive Definite Matrix
Equations in Block Tridiagonal Form
PIRATE solves the matrix equation AX = Y, where
A B
T
By A B
A =

T
By A3 B3
B3 A4

is the block tridiagonal, positive definite, symmetric stiffness
and Y

placements and loads, respectively) are partitioned correspond-

matrix and X (representing the generalized nodal dis-

ingly as

59



: h

: xl : Yl\l
© X Y, |
b X3 \ Y3
l.X4J Y

This algorithm factors the total stiffness matrix into the pro-
duct of a lower triangular array and its transpose and then
solves a pair of triangular sets of equations. This factoriza-

tion is possible only for positive definite matrices.

The method makes use of the Cholesky algorithm to factor the
matrix A into the product of an upper and lower triangular

matrix such that A = LﬁT with

L |
N L T
My L4
My Ly
and
Ay = LIL{
Bl = MIL{ so that M1 = BlLiT
A, = MM + L,Ly so that LyLy = A, = MM
B, = Mng so that M, = BZLET
A3 = MzMg + L3L§ so that L3L§ = A3 - MZME
etc.
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These equations are used in turn to determine Ll’ Ml’ L2,
M2, etc., obtaining each diagonal block by the Cholesky algo-
rithm and each off-diagonal block by solving triangular equa-

tions.

The diagonal blocks of the A matrix, Ai’ are factored

using the standard Cholesky formulas for each block

=

k-1

and
k-1
b = A - Z tishes |/ tge  for 1>k
j=1

A flow chart for PIRATE is shown below.

IPIRATE'

eeaod ey

(ciri) [Boyl  [FUTILE) Eﬂm [TRIEQ]

ITRIE§|

The factorization is carried out by subroutine ATTACK as

follows
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L.Z2. =Y

121 = ¥y
LyZ, = Y, - M7,
LyZg = Y3 - M)Z,

etc.

MORGAN calls SKULL to form the products Mkzk and TRIEQ to solve

the triangular equations for the Zk'

The "back" solution is so called because it obtains the
solution elements in reverse order; in partitioned form the

process 1s

T T N ()
L] M) (xl z,
T T
L M X 7
Ty - 2 2 2 > - 2 >
YL X 7
3 3 3 3
T
L X v4
4 L4/ KZ"J
i.e.,
T
L%y = 24
T, T
LyXy = Zy - M3X,
T, T
LoXy = 2, = MyXq
etc.

Once again, SKULL generates the products Mixk+l and TRIEQ pro-
vides the solutions Xk' Since the Xk are obtained in reverse
order, it is necessary for MORGAN to read them backwards in

order to produce the solution in normal order in core. Note

63



that this is done only after the initial solution since a "back-
wards'" copy of the blocks of L are written on auxiliary stor=-
age for use in subsequent solutions that do not require the

stiffness matrix to be factored.

4. ELEMENTS IN THE PLANS LIBRARY

In this section details about the theoretical aspects of the
finite elements available in PLANS and their capabilities are
presented. The order of discussion is based on the analytical
ahd/or spatial dimensionality of the elements, i.e., one dimen-
sional elements are discussed first, then two dimensional ele-
ments, and, finally, three dimensional elements. The topics dis~-

cussed for each element are presented in the following sequence:

° Introduction

. Displacement Assumptions

® Formation of Stiffness Matrix

® Geometric Stiffness Matrix

° Initial Strain Stiffness Matrix (Plastic Load
Vector)

. Stress Calculations

o Thermal Stress Calculations

i Material Properties

¢ Mechanical Loads

o General Comments
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4.1 Axisymmetric Doubly Curved Shell Element

Displacement Assumptions:

u al a2 33 au ]

™

vV 3= b1 b2 b3 bu

Fa e

W Cl 02 C3 Cu 3

Initial Strain Distribution:

€s esi(c) sSJ(c)

€ = (1"5) eei(C) + E on(c)

Y : i
s8 i . J
- T Yse(c) 'ys@(f_)

Fig. 5 Axisymmetric Thin-Shell Element
4.1.1 Introduction

This element is a doubly curved isoparametric thin shell
element for the analysis of axisymmetrically loaded thin shells
of revolution. It should be used for shells whose thickness to
mean radius ratio is less than 1/10. The shell theory used to
derive the element is Sanders' nonlinear theory for small strains
and moderate rotations (Ref. 43). The element is based on the
formulation initially presented by Levine and Armen (Ref. 44),
and extended in Ref. 26. It has six degrees of freedom at each
node and an axisymmetric torsion capability has been included.
Thicknesses are specified at nodes and allowance is made for a

linear thickness variation from node to node.
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Two local coordinate systems are employed in the element
derivation in addition to the global cylindrical r,9,z system.
One is a local rectangular Cartesian system €£,6,n, as shown in
Fig. 5 with displacements ugs uz, v. The other is the shell
curvilinear coordinate system defined by the middle surface dis-
placement in the meridional direction, u, circumferential di-
rection, v, and normal direction, w. Here ¢ is the dis-
tance normal to the middle surface in the direction of w. The
sign convention for stress and moment resultants and applied

pressures is illustrated in Fig. 6.

4,1.2 Displacement Assumptions

The displacement field may be written in terms of the

generalized Cartesian nodal displacements as follows

u =(”@m.+aghm%.+ﬂ”@mlg+H“V@%e
J

o
]

Y ()v, + Hgy) ()uy ¢ SR OLISEE O :
J

v =@y, +rP v, +aP v, s rP v,
1

where (l)(ﬁ), (l)(ﬁ), (1)(5), (1)(€) are cubic Hermitian
interpolation polynomials. This can be written in matrix form

as

(u ) = [N]{uc ) (42)

i
This results in six degrees of freedom per node. These are
the Cartesian displacements and their respective first deriva-~

tives. These can be related to the shell displacements, u,v,w,

the rotation x = dw/ds - u/Rl, the linear meridional membrane
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Fig. 6 Shell Forces and Moments = Axisymmetric Loading

strain eg = du/ds + w/Rl and the linear membrane shear strain

Vge = dv/ds ~ v cos @/ro, through the matrix [T]
rul 3 [cos B =~-sin B 0 0 0 0 Jiu )
u, sin B cos B 0 0 0 0 w
v 0 0 1 0 0 0 v
(upep=| O 0 0 -4 tan B 2 0 x>
>
o
u2,g 0 0 0 £ £ tan B 0 €q
£ cos 9 _ / o
V.t i 0 0 r_cos B 0 0 cos £l "s6)
\ /
(43)
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or

(u ) = [TT{u)

The final nodal degrees of freedom {us} are u,w,x,eg,v,
and 7;9 leading to a 12 degrees of freedom element. These
quantities are assembled in the tangential-normal coordinate

system at each node.

4.1.3 Formation of Stiffness Matrix

Based on Sanders' theory (Ref. 43) the linear components

of the strain-displacement relations are

€ = eS + CKS
=2 &+ ' 44
€9 T € Ko (44)

o
W/se - ys@ + ZCKSQ
where
o _du, w_ o _1 . o _dv _vcos @
€s ds+R1 > €9 T ¢ (u cos ¢+w sin 9) , Yso T ds T >
« = - dx « = - COS P
s ds o r >
T 3R, sin ¢
_ 1 (1adv . __o v cos @ 1
%6 “7r_ 12 ds C SO g T O T )} ’
o) 1 1 o
Lo v u
ds Rl

The strain displacement relations may now be written in
terms of the rectilinear displacements Uq5Uy,V and these are

related to the nodal degrees of freedom to yield
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(e = fe ) + lx} = (LW ] + ¢lW 1} u,) = [Wl{u) (45)

The elastic stiffness matrix may then be formed as

(07 = | wiTEIWldv
v (46)
1
3 r df
= 274 {h[Wm]T[E][Wm] + %5 [Wb]T[E][Wb]} cgs B

(o]

where [E] is the matrix of elastic constants relating stress to
strain. The quantity h 1is the shell thickness which varies

linearly from node to node.

This line integral of Eq. (46) is evaluated numerically
using Gauss-Legendre integration whose order is specified by the
user. Up to eighth order integration is available but sixth
order has been found to be sufficient for most purposes. For

simple geometries and constant thickness, third order is adequate.

The actual geometry between nodes i and j 1is approxi-
mated by a substitute curve, represented in local £,nq coordi-
nates as 1n = n(€). This curve matches the coordinates and
slopes of the actual curve at the nodes of the element and is a

cubic Hermitian polynomial

no= @837 4 1m; + 387 287)n, + (7~ 260w e)n] 4 (2 - %)y
(47)

The terms in parenthesis are the first order Hermitian poly~
nomtals HSP (), B8 @), u{P @), 1 @), Here and
01 > 702 > P11 > T2 . 1 )
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are the ordinates of the substitute curve at the end points and
My =Ny = 0. The terms n; and 17, are the slopes tan B; and
tan Bj. All appropriate geometric quantities such as 17, R,

and r, are obtained from the R,z coordinates of points i

and j and ¢, and ©¢9,, the angle between the outward normal
i

and the positive z-axis.

4.1.4 Geometric Stiffness Matrix

The geometric nonlinear stiffness matrix is developed based
on the small strain moderate rotation theory proposed by Sanders.
It is intended for use with the '"updated" or "convected" coordi-
nate approach to the solution of geometric nonlinear problems,
The approximate strain displacement equations specialized to axi-

symmetric problems are

_ O 1 2 2
e, =&, + 2(®1 + 97) + Ckg
¢, =2 + 302 + o) + Lk (48)
6 6 2\¥2 e
= vo + + 2¢k
LFY: vs€ CplcPZ s6
where
©, = = - QE = =X P, = L
1 R1 ds 2 R2
1
P = [(xr v) ]
2R1ro o’,9

We can write the geometric stiffness as

k'l = | (01T INI(Ql4a (49)

where
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®1
9, % = [al(u_) (50)

The stress resultants we assumed to vary linearly from node

to node since stress computations are carried out at nodes

[N] = [N]i(l-i) + [N]jﬁ (51)
where
NS NSe 0
[N] = [N_, N 0
0 0 NS+N9
This leads to
1 T T
(k™) = [al [N]i[Q](l-é)dA + [al [N]j[Q]ﬁdA (52)
A A
where
2mr gdé
dA = —%—
cos B

All area (line) integrations are performed using Gauss-
Legendre integration of the same order as specified for the

stiffness matrix.

4.1.5 Initial Strain Stiffness Matrix (Plastic Load Vector)

The effective plastic load vector can be written as
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{AQi} = [W]T[E]{Aep}dv (53)
v

The initial (plastic) strains are assumed to vary linearly

from node to node while at the nodes the variation of the plastic

strains through the thickness is arbitrary. We have then

(aeP(£,8)1= (aeP(0,8)1(1-6) + [acP(1,2))¢ (54)

Using this expression in Eq. (53) and remembering that [W] =

[Wm] + C[Wb] the final expression for {AQi} is
h/2

(aqg) = | (1-&)w ]'[E]da (4¢P (0,£))dt

A -h/2

h/2
+| elw 1 [E]da [ (aP(1,0))at

A ~h/2
(55)

h/2
+ | (-e)w, 1" [E]da t(8eP©0,8) ) at

A ~-h/2

h/2
+| erw, 1T[E)aa £8P (1,0)}at
A -h/2

The integration of the effective plastic forces and moments

through the thickness is carried out using Simpson's rule with an
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option of choosing up to 21 integration points (20 layers).
The number of layers used must be an even number and is input by
the user. Eleven points (10 layers) are usually sufficient.
The area (line) integration is performed using a Gauss-Legendre
integration scheme (input by the user) of the order used to form

the stiffness matrix.

4.1.6 Stress Calculations

Stresses are calculated at the nodes of the element. All
strain components are continuous from element to element except
Ko This quantity is averaged at nodes. All stresses output
are in the shell curvilinear coordinate system. Stresses are
also calculated and output at each integration point through the

thickness by node.

4.1.7 Thermal Stress Calculations

Orthotropic thermal stress calculations are allowed. Dif-~
ferent thermal coefficients of expansion in the meridional and
circumferential directions can be input. A parabolic temperature
distribution through the thickness is assumed at nodes. Between
nodes the meridional temperature variation is assumed to be
linear. Temperatures are input at the top, bottom, and middle
surface at each node. The thermal load vector is obtained from

Eq. (55) where AP is replaced by o,AT, i.e.,
aSAT
(aeP}) = (agaT (56)
0

The integration of the thermal forces and moments is done

exactly, assuming the parabolic temperature distribution.
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Temperatures at layers are obtained by interpolating their values

based on the parabolic distribution.

4.1.8 Material Properties

All material properties are constant within the element and
temperature independent. Elastic properties are orthotropic.
The meridional and circumferential directions are the principal

directions of orthotropy. We have

N Es VSQES Y
Ig 1l - v v 1 - v v 0 s
sO Os s6 6s
v, E E
8s 0 )
5 P= . o [{e, - tcite)
ﬁ 0 L - VooVes 1 7 Veoves 0
TS@J I 0 0 GSG O/SGJ
2 . . . .
where C11C22 - C12 > 0 for positive definite stiffness matrices.

Plastic material properties are assumed to be orthotropic
with Hill's yield criterion for plane stress used for initial
yielding

2 2 2
f = (G+H)GS + (F+H)oe - 2Hcsc + 2NfrS =1 (58)

e 6
with GHH =1/X%, F+H=1/Y°, 2H= 1/x°+ 1/¥%- 1/2%, 28=1/1%, and
X,Y,Z are the yield stresses in tension in the s,6,{ direc-
tions, respectively. T 1is the yield stress in shear in the s-6
plane. For two dimensions the stability criterion for use of

this yield condition reduces to

2

1 1 1
S+ 5 -5) >0 (59)
X2y (XZ Y2 ZZ>
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Perfectly plastic; linear strain hardening or nonlinear
strain bhardening laws may be chosen. For orthotropic plasticity
the individual components of the stress-strain law are input and
each component may be represented as linear or nonlinear strain
hardening. If one component is perfectly plastic all must be.
At the end of each half~cycle of loading new plastic material
properties may be input but not new elastic material properties.
This allows subsequent half-cycles of the stress~strain curve

to be accurately represented.

Thermal coefficients of expansion may be input orthotropi-
cally, i.e., different in the meridional and circumferential di-

rections. They may not be changed at the end of each half-cycle.

4.1.9 Mechanical Loads

Two types of mechanical loads may be applied to a shell ele-
ment . They are surface tractions and concentrated (or line)

loads.

Concentrated or lLine Loads (Edge Loads) — These are applied

as forces per unit length of circumference except at r = 0
where N_=M_ =N =0 and F
s z

s s6
force. At any other radial location the line (or edge) loads are

il

QS represents an actual

applied in the natural (shell) curvilinear coordinates as Ns’
Qs’ Ms’ and Nse in the wu,w,x, and v directions, respec-
tively. These forces per unit length are applied and specified

at nodes of the shell.

Surface Loads — The surface tractions are specified per unit
surface area in the meridional Py normal, pc, and circumfer-

ential directions, Pg- They are assumed to vary lineérly from
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node to node. All three components at each node must be speci-
fied. The loads are applied through consistent load vectors

which are calculated in the program

r f ")
1 psi 1 rpsj - psi\
(p,) = 272 [N]Trdiﬂ Py M+ [N]Tﬁrd€< P, - P % (60)
i i i
0 P 0 P - P
\ 914 \ Gj eiJ

All integrations are carried out numerically using a Gauss~
Legendre scheme of the same order as specified for the stiffness
matrix.

4.1.10 Equilibrium Correction

The equilibrium correction term is written as

[Ri} = (P} - [w]T{c}dv = (P} - [W]T(l-ﬁ){Ni}dA
(61)

+ [wlTé{Nj)dA
A

Here the stresses are assumed to vary linearly from node to node
for the equilibrium correction. The stress and moment resultant
vectors at each node [Ni} are evaluated by numerically inte-
grating the stresses through the thickness using Simpson's rule
in the same manner used to obtain the "inelastic forces and

moments."
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4.1.11 General Comments

. Pole Conditions — At a pole (r = 0) the following condi-
tions must be satisfied for the shell element: 1) up = 0, if
we have a shell where dr/dz =0 at r=0 (i.e., o= 0 or
m) then this implies u =0; 2) x = 0; 3) v=0; and
4) Y 00 = 0. Correspondingly, no forces can be applied at

r =0, i.e., NS = Ms = NsGE 0.

i Cap Element — No special cap element was required for the
axisymmetric shell element described here. The use of the Hermi-
tian polynomial representation of the displacement components uq
and u, eliminates the necessity of obtaining a relationship be-
tween the generalized coordinates and the degrees of freedom any-
where in the element, and specifically at a pole. Furthermore,
since the integration was performed numerically using the Gauss-
Legendre technique, no actual evaluation of the function matrix
[W] at the point of singularity or indeterminacy was required.
The singularity was isolated and all improper integrals required
for the various matrices converge. The terms of the matrix [W]
required for the ug and X5 degrees of freedom, which might
result in numerical problems, were removed since the radial dis-
placement and rotation are identically zero at the pole. To ob-
tain strains at the pole, appropriate limits were taken in the

[W] matrices, employing L'Hopital's rule. It is, however, neces-
sary to use a finer grid in the region of the pole than elsewhere.
Treating the pole as if it were an actual physical boundary leads

to accurate results for displacements and stresses.

° Geometric nonlinear analysis using this shell element is
only available in a special purpose module called AXSHEL. It is

not available in REVBY at the release date of this report.
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® This element is available in the REVBY module of PLANS.

4,2 Axisymmetric Ring Element

4.2.1 Introduction

Classical beam theory forms the basis for the development
of the stiffmess matrix for a thin circular ring of arbitrary
cross section, as derived in this section. This element is used
in the REVBY program and is intended for use with the revolved
axisymmetric shell element. Pertinent geometry defining the
ring-shell intersection is shown in Fig. 7. 1In the following
derivations it is assumed that the shear center and centroid of

the ring coincide.

4.2.2 Displacement Assumptions and Formation of Stiffness
Matrix
Based on thin ring theory for an axisymmetric circular ring,
the total strain and stress for any point in the cross section in

the presence of an initial (plastic) strain is

e = - (u, - ¥B) (62)
C
o =E(e ~ €) (63)

where r, is the radius of the ring, € 1is an initial (plastic)
strain, u, is a component of displacement of the ring axis, and

Bz is a rotation normal to the ring cross section.

Substituting Eqs. (62) and (63) into the expression for

strain energy leads to
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shell

Fig. 7 Ring=-Shell Geometry

1

_ Em 2 2
U = (Auc + IXBZ) + 27E

=

(uc - yBZ)edA + £ ezdv

2
c

(64)

v v

where A and IX are the section area and moment of inertia.

Using the Principal of Virtual Work yields the equilibrium equa-

tion relating force, displacement, and initial strains

u. fA edA

£ = [K] - (K] (65)
B, fA yedA

where [k] 1is the element stiffness matrix given by
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EA I O
(k] = 2 [--'-- (66)

{
“lo |EI
X
* . . s . . .
and [k ] 1is the initial strain stiffness matrix.

4.2.3 Initial Strain Stiffness Matrix

The initial strain stiffness matrix obtained in Eq. (65) is

given by

|
(k] = 27 —-—:—- (67)
|

Lo

The plastic load vector {Q} 1is the product of [kk] and the

vector of integrated plastic strains.

Since the plastic strain miay vary through the ring cross
section the integrals in Eq. (64) cannot be determined a priori.
These integrals are performed numerically for plastic rings using

a Gaussian quadrature.

4.2.4 Transformation to Shell Coordinate System

The stiffness matrices of Eqs. (66) and (67) are written
with respect to the ring coordinate system. In order to use the
ring element with the axisymmetric shell element the ring must

be related to the shell coordinate system.

The pertinent geometry defining the ring-shell intersection
is shown in Fig. 8 for an attachment at point A. Continuity of

the ring and shell displacements at point A 1leads to

80



u
u
c [a V]
=[T]< w } (68)
> 3
.
where
L i R
| R2| sz (o}
[T]:—....I__.__._._l__.__...._
I {
0 ! o | -1

u, w, ¢, are the shell displacements and rotation, r and R2
are the shell radii of curvature shown in Fig. 8, and '"prime"

denotes differentiation with respect to the arc length, s.

Fig. 8 Geometry Defining the Ring=-Shell Intersection
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The final stiffness and initial strain matrix with respect

to the shell displacements then is

(k) = [TV [k][T] (69)
(k1] = [T17[K"] (70)
4.2.5 Stress Calculations

Stresses are monitored at a specified number of Gauss points
for each cross section via Eq. (63). From these stress values,
each point is checked for yielding and if necessary plastic
strains are calculated. Once these values are determined the

numerical integration can be performed.

Five distinct ring cross sections are currently in the REVBY
module, a solid rectangle, solid circular, Z-section, I-section,
and hollow circular section (see general comments for section de-

tails).

4,2.6 Thermal Stress Analysis

A parabolic temperature distribution can be specified through
the depth of the ring (i.e., along ; in Fig. 8). Three tempera-
tures are specified. They are at the top, centroid, and bottom
of the ring. The thermal load vector is formed in the same manner
as the plastic load vector with e replaced by oAT. Thermal
strains at integration points are determined by interpolation

based on the assumed parabolic distribution.

4.,2.7 Material Properties

Elastic, ideally plastic, linear strain hardening or non-

linear strain hardening stress-strain laws may be chosen. The
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nonlinear hardening is based on a Ramberg=-0sgood representation
of the actual stress~-strain data. The plastic material proper-

ties may be changed at the end of each half-cycle of loading.

4.2.8 Loads

Only axisymmetric line loads may be applied at the node de-

fining the ring location.

4,2.,9 General Comments

. Five different cross sectional shapes for the ring are
available in the REVBY module. These are shown in Fig. 9. They
are: 1) a solid rectangular cross section, SREC; 2) a solid
circular cross section, SCIR; 3) a Z-section with equal area
flanges, i.e., a = b, ty = t,, ZSEC; 4) an I-section with
equal area flanges, i.e., a = b, ty] =ty ISEC; and 5) a hol-
low circular cross section, HCIR. The order of the Gauss-~
Legendre integration schemes used to obtain the plastic load

vector follows

Section Gauss-~-Legendre Integration Order
SREC Three by three array (9 points)
SCIR Two radial points times four circumferential

points (8 points)

ZSEC Third order in each flange and web (9 points)
ISEC Third order in each flange and web (9 points)
HCIR Eighth order around the circumference

(8 points)
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Fig. 9 Available Ring Cross Sections in REVBY



o For the Z- and I-sections the thicknesses are assumed to
be small compared to the flange and web lengths. For the hollow

circular section it is assumed t/a << 1.

o The applicable module for this element is REVBY.

4.3 Stringer Element

4.3.1 Introduction

This element is used to represent a one dimensional axial
force structural member. Two stringer elements are included in
the PLANS system: a two-node element developed from a constant
axial strain assumption and a three-node element developed from

a linearly varying strain assumption (Fig. 10).

4.3.2 Displacement Assumption

The distribution of the three local displacements u,v,w

shown in Fig. 10 is assumed to be

’u(xj\ ’ui’ rﬁj\
(v p= (1-8){ v; P+ (v 0 1)
LW(XXJ Y1 J "3 J

where € = x/# for the two-node stringer and

(u(x) fui\ uj\ ruk\
(v 0= @ef -3t 1) fvy b @87 =) (vy hr - e w b ()
w(x) J’qj_J Wj ka_/

for the three-node stringer.
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(a) Constant strain element (b) Linear strain element

Displacement Assumption:

2
= +
u aq + a,X a3x

Initial Strain Distribution

€ = constant

Fig. 10 Stringer Element

As shown in Fig. 10, the indices 1i,j denote the end point
nodes of the three-node stringer. The specification of the axial
displacement component is sufficient to fully describe the elastic
linear response of a stringer element since the element has no
out-of-plane (normal to the axial direction) stiffness. The nor-
mal components, v,w, contribute to the elastic, geometric non-
linear response by coupling the axial force to the out~of~plane
response, This coupling leads to the initial stress stiffness

1]. It should be noted that displacement components

matrix [k
v,w, as shown in Fig. 10, refer to any two mutually perpendicu-
lar directions normal to the stringer axis since the stringer

does not have a preferential cross sectional reference system.
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4.3.3 Element Stiffness Matrix

The element stiffness matrices are obtained from the princi-

ple of virtual work (Section 3). The appropriate strain displace-

ment relations are

2
d d
= a5

2
+ %(%%

(73)

Using this approach, the linear and nonlinear components of total

strain are obtained from Eqs. (71) and (73) as

he = % [-1 E

Vo x -1 ) +1 !

A B !
B I

w 0 0 i

for the two-node stringer and

1 J
fe = 5 [4£-3 1 4E-1

(74)

(75)

(76)
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v,
]
o 46-3 1 4E-1 1 86-41 0 1 0« O]],
3 X 1 i | 1 ! ) k\
=TT T T T T T T T T T T T T TRy, D
W 0 { 0 ! 0  4t-3 ) 46-1 | 8t-4)] *
» X iw,
; J
lw
K
L)

for the three-node stringer.

Making use of Eqs. (74) and (76) in the definitions for the
elastic stiffness matrix [ko] and assuming a constant cross

section stringer then yields

1 -1
[kO] = %?{ ] for the two-node (78)
-1 1 stringer
and
7 -8 1
k%71 = %% 8 16 -8 for the three-node (79)
1 -8 v stringer

where A 1is the section area and E 1is Young's modulus.

4.3.4 Geometric Stiffness Matrix

Using Eqs. (75) and (77) in the definition of the geometric

stiffness [kl] gives
1 -1
1, F |~ 1
(k] = = for the two-node (80)
£ 0 0 1 -1 .
stringer
-1 1
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and

[ 7 1 -8 0 0 0]

1 7 -8 0O 0 o©

1 F -8 -8 16 0 0 0

[k*] = 370 0 o 7 1 -8 for.the three-node (81)
stringer

0O O 1 7 -8

| 0 O 0O -8 -8 16

Here F 1is the average axial force.
4.3.5 Initial Strain Stiffness Matrix

The initial strain matrix is based on the assumption that
the thermal (plastic) strain is constant in the element. Thus,

the initial strain matrix can be written

-1
*
[k ] = EA |+1 (82)
0

for both the two- and three-node stringer elements.

4.3.6 Stress and Force Calculations

Element axial forces in the presence of thermal (plastic)

strains are calculated as
(£} = 1K1 (8) - (Kl ) (83)

where {6) are the local axial displacements and {ep} are the

average thermal and/or plastic strains. Average element stresses
are calculated at the center of the element and are used in conjunce-
tion with plasticity calculations consistent with the assumption of

constant plastic strain within each element.
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4.3.7 Thermal Stress Calculations

Temperatures are specified at the two end point nodes.
These nodal values are used to determine an average element
temperature.

4.3.8 Material Properties

Plastic strains are calculated using a uniaxial bilinear
stress-strain relation or a nonlinear Ramberg-Osgood relation.
Perfect plasticity is also accommodated.

4.3.9 Loads

The stringer can be loaded by concentrated nodal loads or

consistent distributed line loads (Section 4.7.9).

4.3.10 Comments

° The three-node stringer has an assumed displacement function
consistent with that used for the LST of Section 4.7 and is,

therefore, used when linking an LST with a stringer.

° The applicable modules for this element are OUT-OF-PLANE,
BEND, and OUT~OF-PLANE-MG.

4.4 Beam Element

4.4.1 Introduction

The stiffness properties for an initially straight beam
finite element of arbitrary cross section are derived in this
section based on the assumptions of classical beam theory. These

assumptions include
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1) Normals to the centroidal axis remain straight and
normal after deformation and their length remains un-
changed, i.e., the effect of transverse shear deforma-

tion and transverse normal strains are neglected.
2) Warping of the cross section is nelgected.

Although assumption 2) is restrictive for all but circular cross
sections, the ability to specify the actual torsional rigidity
has been maintained. Throughout the development, it is assumed
that the shear center and centroid of the cross section do not
necessarily coincide. The element coordinate system (located at
the shear center of the cross section) and convention for mo-

ments, forces, and displacements are shown in Fig. 11. Based on

Fig. 11 Coordinate System and Convention for Forces
and Displacements for Three Dimensional
Beam Element
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the convention of Fig. 11 and assumptions 1) and 2), as noted
previously, the displacements at any point within the beam cross

section can be written as

u, =u, + (z - zcg)By - (y - ch)Bz

v, = Vg = ZB, (84)

wz = wS + yBx

where u, is the axial displacement of the centroidal axis; Vs

w_ are the lateral displacements of the shear center in the

o

cross sectional y and =z directioms, Bx, By, Bz are cross

sectional rotations defined in Fig. 12, and Ve are the

g: ch
distances between the centroid and shear center.

Fig. 12 Convention for Rotations
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Based on Eqs. (84) and excluding terms associated with non-
linear terms in the curvatures, the nonlinear strain displace-

ment relations are \

- - _ - _ P
e, = ¢, + (z zcg)xy (y ycg)Kz €x
Y, =-BB =-zk  ~vb
Xy X'y yz Xy (85)
— - - AP
Yxz = ¥z BxPz ™ Vxz
where
Jdu
e —C o 102, 1.2
e0_5X+2By+2BZ
-
y sz z sz
"
yz = X

and ep, vp > vp are initial or plastic strainms.
x’ 'xz Xy

Equations (85) along with the definitions for moment and

product of inertia about the section centroid

I = (z - z_ ) dA , I = (y - ycg)sz

I,=| -y -z, )da

A

are used to derive the element stiffness matrices.
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4.4.2 Displacement Assumptions

There are four independent displacement components that are
prescribed to formulate the beam element stiffness properties.
These are the two transverse displacement components, Vs W
and the axial displacement and twist, u, and 6x. The out-of-
plane rotations are related to the transverse displacements in

the usual manner by imposing Kirchoff's hypothesis, i.e.,

By = -W,x ’ Bz = v,x

the two components of transverse displacement are assumed to be

cubic functions that are solutions to the linear homogeneous beam

equations

v_- iV, Y/
s 1\ !
{

: (1) .
+ Hpp zs \ (86)

1 2

b (1)
(’— Z H0:'L
Coi=l W, w 5
S - 1 { axi

W

where £ = x/f, £ 1is the element length, and

(1) _ .3 ,.2
(1 _ .3 2
Hy,” = 267 + 3¢
(1) _ .3 2
Hyj' = E7 ~ 287 4+ £

(1) _ .3 2
Hy,” = £7 - €

It is assumed that the in~plane displacement and twist u,> BX

are linear functions of the axial coordinate
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C 2 ' i
_ (0)
- Z HOi \ (87)
Px i=1 iﬁxl
where
O _ . _
Hy;” =1 - ¢
(0) _
Hy,” = £
4.4.3 Stiffness Matrix

The elastic component of the stiffness matrix can be de-~
veloped using the principle of virtual work or from energy con~
siderations. In either case, use is made of the kinematic dis-
placement assumptions, Eqs. (84), to reduce the general relation-
ship for the stiffness matrix, which is a function of the three
spatial coordinates and involves a volume integral, to a function
of only the axial coordinate and a simple one dimensional inte-

gral of the form

g
0 T
(k7] = (Wl [D][Wldx
0
where
EA 0 0 0
0 GJ 0 0
Dl =1p o EI EI
yy yz
0 0 ~ET EI
vz 2z
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and A 1is the cross sectional area, Iyy’ Izz, Iyz the cen-
troidal moments and product of inertia, respectively, J is
the section torsional rigidity, and E and G are Young's
modulus and the shear modulus, respectively. The [W] matrix
is obtained by substituting the displacement assumptions,

Eqs. (86) and (87) into the linear component of the strain dis-

placement relations, Eq. (85) and is written as

B

1 1 ‘
£ 0 o0 0 0 0 = 0 0 00 o0
1 1
60 o0 -2 0 0 0 0 0 5 0 0
W] = ¢ ) ® ® (88)
00 -—- o0 --20 0 o Lo 2o
7 7 2 7
£ y
¢ ¢ ¢ o)
0o % o o o 20 -—40 00 -2
2 7 2 Z
y ’ _
where
¢1= 6(26' - 1) s ¢2= (6€ - 4)
05 = (66 ~ 2)

The resulting stiffness matrix is a 12 x 12 matrix with
six degrees of freedom per node ui, Vi Wi’ Bxi, Byi, Bzi,
where the axial displacement refers to the centroid and the

lateral displacements refer to the shear center.

4.4.4 Geometric Stiffness Matrix

The development of the 'geometric" stiffness matrix or ini-
tial stress stiffness matrix, based on small strain, moderate ro-

tation assumptions for a planar beam, is straightforward and has
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been previously presented in Ref. 17. However, for the case of

a general space frame subjected to torsion as well as bending,
there is nonlinear coupling between bending and torsion which can
lead to various expressions for the initial stress stiffness
matrix depending on the approximations made in arriving at the
strain displacement relations, Eq. (85). In this development

the simplest approach was taken in that nonlinear contributions
to the curvature and twist are neglected and Kirchoffs hypothesis
is imposed om only the linear components of strain. 1In so doing
the form of [kl] is similar to that for a planar beam with

the addition of only the nonlinear coupling between torsion and

bending.
With these considerations, [kl] can be written as
Y/
1
(k7] = ol [21laldx (89)
G
where
0 -V -V
y z
5] = |~V T 0
(=] .
-V 0 T
z
and
0 0 0 ¢4 0 0 0 0 0 ¢5 0 0
°1
[Q]=00-z—0¢200 0¢10¢>30
] o}
1 S
0 7 0 0 0 ¢2 0 7 0 0 0 ¢-3~
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2 2 2
0p = 6(87 - &) , o, =387 - 46 + 1 , o= 367 - 2¢
¢4=1-€ :¢5=&

4.4.5 Initial Strain Stiffness Matrix

The initial strain stiffness matrix is used to compute the

nodal forces due to thermal or initial strains. 1In a plastic

analysis using the "initial strain" method it is used to deter-

mine the effective plastic load vector (Ref. 8) as

where
{2Q])
(K]
and
{ae)

(8Q) = [k 1{ae)

is the effective plastic load vector

is the initial strain stiffness matrix

is the vector of discrete quantities character~

izing the state of plastic strain.

The initial strain stiffness matrix, based on the displacement

assumptions of Eq. (84) can be written as

\
( Ae
X

(z - zcg)Aex
g < > v (90)
v (v - yog)leg

P P
yAvy,,, = 2zhy
L X2z Y?;

where [W] 1is the matrix defined in Eq. (88) and
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0 0 -E 0

|0 O 0 G

Because for a three dimensional space frame, the plastic strain
varies in each cross section as well as in the axial direction,
Eq. (90) cannot be immediately reduced to a one dimensional in-
tegral as was the case for the stiffness matrix. However, con-
sistent with finite element analysis, the functional form for

the distribution of plastic strain increment can be assumed for
each beam element. To this end, it is assumed that each compo-
nent of increment of plastic strain varies linearly in the beam

axial direction. Thus

X X
e, = (1 -Pe, (v,2) + 5 e (y,2)
i j
P _ (1 - %P X P
Yey = (1 z)vxyi(y,Z) + 3 nyj(y’ ) (91)
P _ (1 -%,P X P
Yy = (1 E)vxzi(y,Z) + 7 vxzj(y,Z)

where the 1,j denote the two beam nodes, respectively (Fig. 11).
At this point no assumption is made for the distribution in any

%
cross section. With this assumption, [k ] can be written as
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)
Ae w
i
JA i :
%* T — — : — J___. ______ -
[k ] = - Wl [El[C, ! C,ldx _ Aexj » dA (92)
I
0 { A
P p
yoy - zly
{ sz ij J
where
¢§0) 0 0 0
1
0 o0 o 0
— 1
[c.] =
1
0 0 N
1
i=1, 2
0 0 0 6 (0)
i |
and
0) _ Xy . 0 _x
o 7 =@ =% 5 0yt =7

The integrals in Eq. (92) are evaluated numerically using a
Gauss-Legendre integration scheme. To accomplish this, the
shape of the cross section must be known a priori and increments
of plastic strain must be evaluated at the Gauss points in the
cross section. To this end nine distinct cross sections have
been provided for in PLANS. These are shown in Fig. 13 along

with the order of Gauss-Legendre integration.
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4.4.6 Transformation to Global Coordinates and Offset
Specification

Once the element stiffness matrices have been evaluated, it
is necessary to assemble each matrix to some common global sys-
tem. However, since the beam element is geometrically one dimen-
sional, only the orientation of the beam axis is known by speci-
fying the coordinates of the end point nodes. Consequently, the
orieﬁtation of the cross sectional axes remains undefined. In
order to define this orientation an extra node point must be

specified as shown in Fig. 14.

This additional node defines a plane that fixes the direc-
tion and orientation of the y-axis. The =z=-axis is perpendicu-
lar to this plane. 1In practice, this node can be part of the

structure or it can be specified only for the purpose of defining

7 k
y /X
J
i

Fig. 14 Beam Node Specification
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the cross sectional orientation. If the latter option is chosen
all degrees of freedom associated with the node must be fixed.
Once this additional point is defined, the direction cosine
transformations between the local and global directions are com-

pletely determined.

Also accounted for in the transformation between the local
and global systems is the offset of the attachment point (point
A in Fig. 15) from the beam axis. The appropriate transforma-
tion is obtained from the beam kinematic assumptions, Eq. (84),

. . th
and can be written for the 1i node as

A (attachment point)

cg
s - Y g

Fig. 15 Definition of Offset Point
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fUA 1
i
v
Ay
ull‘ 1 0 O 0 (zs- ch) -(ys- ycg) w,
iv.\i=1lo 1 0 = 0 0 ( "}
1l ; S B
| x
Lwij 0 0 1 Yo 0 0 i
5yi
B
ZiJ

Geometric nonlinearity is considered in PLANS using an up-
dated coordinate system. In using this method the change in
orientation of the beam element must be accounted for during
each load step. To this end the change in orientation of each

element is calculated as

gGEB ﬂBme m, ]
7 i+1 - \\i
X X
, _ -(Eame + Eeﬁa - o ;
zemamB) mgMmam B a
ZJ 1 ZJ1
MM -(zema + '
EazemB EamemB) a B_

where the coordinates shown are with respect to the beam local

axis system and
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. = Ow,
-1 AWJ Wy

B = tan ~ R >
N (g + Auj + ui) + (Avj - Avi)
ABX. + Aﬁx.
a = ! L
2
ze = cOos ¢ s my = sin 6
EB = cos B . mB = sin B
£ = cos a 5 m = sin a
a o

Superscripts i+l, i represent the current and previous con-~
figuration, respectively, and £ 1is the element length in the

. th . .
1t configuration.

4.4.7 Force, Moment, and Stress Calculations

The incremental element nodal forces and moments are ob-
tained in each load increment by making use of the element stiff~
ness matrices related to the local element coordinate system.

Thus
a8y = {0 + e iftany) - <" ltae) (93)

Total forces are obtained by summing incremental quantities.

The stresses are evaluated within each increment by substi-
tuting the displacement assumptions, Eqs. (84), into the linear
portion of the strain displacement relations and then making use
of the appropriate stress~strain relations. These equations are

evaluated at the Gauss points of each sectionm.
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4.4,.8 Material Properties

Elastic, ideally plastic, linear strain hardening, or non-
linear strain hardening stress-strain laws may be used with the
beam element. The nonlinear hardening is based on a Ramberg-
Osgood representation of the actual stress-strain data. The
plastic material properties may be changed at the end of each

half-cycle of loading.
4.4.9 Loads
The beam element can be loaded by

a) Concentrated forces and moments at each node

~ b) Linearly varying distributed load in the local

y and z directions.

The consistent load vector for the distributed load is obtained

from
1 .
94
(f} = 2 [NHQwit—
q.
0 J

where [N] 1is the shape function for the lateral displacement

2&3 - 3&2 + 1

~2&3 + 3&2

[N] = (94)
2> - 262 4 ¢)
pee> - ey

Ql =[1-£6 ! &]
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q; 5 qj are the magnitude of the distributed load at each node
in the y or 2z direction and {f} is the vector of local forces

and moments in the x~y or x-z plane.

4.4.10 Comments

. The beam element is available in the OUT-OF-PLANE, OUT-OF-~
PLANE~-MG, and BEND modules of PLANS

d Currently, offsets at both ends of the beam must be the
same

o No thermal capability is currently available for the beam
element

4.5 Shear Panel Element

4.5.1 Introduction

A warped shear panel has been included in the element
library of PLANS. This element is used in practice to model
shear webs of wing spars and ribs as well as the sheet area of
some fuselage sections. The development of the stiffness proper-
ties for this element does not follow the usual consistent de-
velopment of element properties. The procedure shown herein fol-

lows the development as described in Ref. 46,

4.5.2 Stiffness Matrix

The element characteristics for the warped shear panel are
developed from the assumption of a distribution of stresses
within the element that satisfy equilibrium but do not satisfy
strain compatibility, except in the case of a parallelogram. A
flexibility coefficient is then computed, using an energy formu-

lation, and a set of equilibrium equations is used to obtain the
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stiffness matrix. Details involved in obtaining the energy ex-
pression can be found in Ref. 47. 1In order to obtain the stiff-
ness of the element, six equilibrium equations are written for

the element in the reference coordinate system shown in Fig. 16.

The forces fi, fé, fé, and f& (Fig. 17 are necessary to
ensure equilibrium in the z-direction. The next step is to
solve for fi, fé, f;, fé, 4y, 43, and q,, in terms of q;.
Since there are six equations and seven unknowns, an additional
equation is needed, which is obtained by assuming that the re-
sultant force in the z-direction passes through point v
(Fig. 18), and that one-half of this resultant is acting at

nodes j and k.

A
no
A

Fig. 16 Projected Quadrilateral
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Fig. 17 Equilibrium of Warped Shear Panel

Fig. 18 Additional Geometry for Warped Shear Panel
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Taking moments about a line passing through node j and

parallel to i-¢

84
l__]; ’ 'd Fd s
£5 =% 57z, (£] + £5 + £5 + £7) (95)
or
fl + f2 + (1 - y)f3 + f4 = 0 (96)
where
2(g, + g,)
3 4
Y = z (97)
4

The equilibrium equations and Eq. (96) can be written in the

matrix form
[EQI{£f"} = (Rlq (98)

" _ , ’ ’ 4 .
where {f"} = {fl f2 f3 f4 4, dj qa}. Solving Eq. (98) we have

(") = [EQ)"'(R)q, (99)
or
(£) = (E)q, (100)

where {f} is obtained by enlarging {f"} to include q; and

-1

{(E} is obtained by correspondingly enlarging [EQ] (R} to in-

clude the identity d; = dq-

The eight applied forces can be considered to correspond to
eight degrees of freedom. They are related, as we have seen, by
seven equations, six of which are based on static equilibrium
and the seventh is an assumed relationship. An additional rela-
tionship, based on elastic deformation and corresponding to a

single elastic degree of freedom can be introduced. 1If we regard
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q, as representing the generalized force corresponding to the
elastic degree of freedom and & is defined as the correspond-
ing generalized displacement, thelelastic strain energy may be

written in the form

U=35 101
] qlql ( )

Introducing the relationship
6q1 = aq, (102)
where o is a flexibility coefficient, we can write Eq. (101) in

the form
U= 56 (103)
a "q

An alternative form for the strain energy is
u=13 (£)7(s) (104)

where ({5} 1is a displacement matrix corresponding to {f}. Sub-

stitution of Eq. (100) into Eq. (104) yields
— 1 T
u =3 ) s)q, (105)
Comparing Eqs. (101) and (105), we see that

5 = (E}Y(s) (106)
49

Substitution of Eq. (106) into Eq. (103) yields the form

U =5 (6)(ENE)T(5) (107)
or
U =1 (s} [kI(s) (108)

where

111



T
(k] = 3.1; (E}(E) (109)
[k] is seen to be the stiffness matrix in the relationship
{£f)} = [kl{s] (110)

The flexibility coefficient o is computed for the pro-
jected geometry of the warped quadrilateral on the reference
plane defined by the lines 1-4 and 2-3 in Fig. 16. This coeffi~
cient gives the relationship between the generalized shear de-
formation, Sq , and the shear flow, q7» acting along side

1-2, as shown in Fig. 16.

The computation of o for a particular quadrilateral de-

pends on its shape, which can be any of the following four types

e Parallelogram or rectangle
L Trapezoid with side a parallel to side ¢
A Trapezoid with side b parallel to side d
i General quadrilateral

In general, the expression for o 1is not easily obtained
for trapezoidal and quadrilateral shapes. Approximate expres-
sions have been derived, however, for these shapes by Garvey
(Ref. 47) based on the assumption that there are some directions
in the panel that are in states of pure shear. This is true for
both rectangles and parallelograms, but is only an approximation,
for trapezoids and quadrilaterals. Therefore, shapes which vary

substantially from a parallelogram introduce errors in the analy-

sis.
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4.5.3 Initial Strain Stiffness Matrix

In the presence of initial strains an initial generalized
displacement component, 6: , must be added to Eqs. (102) through
(103) so that L

o]

3] = aq, + 5
1 q
1

q;
and

5 = (E)T((8) - (8)9)
91

where [6}0 is an initial displacement associated with the
forces {f} of Eq. (104). This leads to the expression for
strain energy

U= 306)T1kI(6) -3(6)TIEIEIT(5)° + 3(c°ITIEI[E] (5
Since

(6° } = (E}7(5°)
9,
and

(62 ) = () a Gy
9, o
where Yo is an initial strain corresponding to dq3 the com-

plete integral can be written as

v =36)T k10837 - (o)™, - 2052 EIEY (60
where the initial strain matrix is

k'] = ) ¢
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4.5.4 Comments

L The shear panel is available in the OUT~-OF-PLANE module

i The element can currently be elastic only

° The element has no thermal capability

° Force output is in terms of the shear flows and normal
forces

4.6 Revolved Triangular Ring Element

4.6.1 Introduction

The revolved ring element is used to describe three dimen-
sional axisymmetric bodies subjected to axisymmetric loads. The
element is two dimensional in that there is no variation of
stress or strain in the circumferential direction. However, the
strains and stresses in the circumferential direction must be

considered as they are induced by radial displacements and

anisotropy.

The element is an orthotropic triangular ring element simi-
lar to that described in the literature (see, for example,
Ref. 45). Figure 19 depicts the element along with the principal

material directions.

4.6.2 Displacement Assumptions

The element is characterized by a linear displacement as-

sumption, independent of the circumferential direction, i.e.,

u. = a; + a,r+ asz
u, = a, + agr +acz (111)
Ug = a5 + agr + agz
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> 6
\/’ 8
1
—
Fig. 19 Revolved Triangular Ring Element and
Principal Material Directions
The appropriate strain displacement equations are then
Crr T ur,r oz u@,z
= = 112
€o0 ur/r “rz ur,z + uz,r ( )
€2z uz,z €ro T u@,r - ua/r
Substituting Eq. (111) into Eq. (112) we arrive at
(e} = [B]{a} (113)
where
T
(e} = 1€co  Czz  Srr €rz  €ro  Cze)
a T
{a) = la1 a, . 9]
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and

[1/r 1 z/r 0 0 O 0 0
0 O 0 o0 0 1 0 0
0 1 0 0 0 0 0 0
(8] =1, o 1 o0 1 0 0 0
0 o 0 0 0 0 -1/r O
0 o 0 o0 0 0 O 0

o O O

-z/Tr
1

From Eq. (111) we can determine {a} in terms of the nodal dis-

placements
{a} = [A]l{u)
where
_ i j k i 3j k i j
{u} = [ur u u_ u, uy, u, Ug ug
)t
[A] = (M)~
-1
] [M]
and
1 rl 7t

(114)

This leads to an expression of strain in terms of the independent

degrees of freedom (nodal displacements),
(e} = [W]l{u}

where ([W] = [B][A].
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4.6.3 Stiffness Matrix

Integrating the elastic strain energy over the whole ring

element

U=3]| (o}l(erav (116)
v

where {e} can be expressed as the difference between the total

strain and initial strain
{e}l = (eT} - fc—:O]

and using the principle of virtual work we arrive at the stiff-

ness matrix

(k] = 27 W1T[C)W]rdrdz (117)
v

where [E] is the matrix of elastic constants (see Section

4.6.7).

In order to integrate Eq. (l17) we must integrate the fol-

lowing quantities

1
= drdz = I

E drdz = I (118)
r T2

'122
= drdz = 13
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over the area of the element, as shown in Fig. 20. This integra-

tion can be carried out as follows

( r=rk Z=Aik+Bikr r=rj Z=Akj+Bjkr

f(r,z)drdz = +
A r=ri z=0 r=rk z=0
r=r z=A, .+B..r
] L 1]
- f(r,z)drdz
r=r, “2z=0 J
where
r m - TmZn z - zZ
A = , B = z
mn r - r mn r - r
n m n m
z k

Fig. 20 Integration Limits
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Carrying out this integration we arrive at

=
i

1 = (A -Aik) log r; + (Akj-Aji) log ry + (A -Akj) log r

Jji k

+ Bij(ri - rj) + Bjk(rj - rk) + Bik(rk - ri)

=
I

2 2 2 2 2 2
[(Aji Aik) log ri4-(Akj- Aji) 198 rj-k(Aik-Akj) log rk}/2

+ A - ri) + Aijkj(rj - ) + A..B,.(r, - r.,)

ikBik(rk jiTii Ty i

2 .2 20, .2 ,2 2. .2 .2 2
+ {Bik(rk ri) + Bkj(rj - rk) + Bji(ri - rj)}/4

a3 ,3 33 3 3
13 = [(Aji Aik) log ri-+(Aij-Aji) log rj-F(Aik-Akj) log rk]/3
2 2 2
+ AikBik(rk ri) + Aijkj(rj - ) + AJlBJl( ;- rj)
2 .2 2 2 2 2 2
+ {AikBik(rk ri) + AkJ kJ(r - k) + AjiBji(ri - rj)}/2

3 3 3 3 3 3 3
+ {Bik(rk - ri) + Bkj(rj - rk) + BJ (r ;- rj)]/9
Two special cases arise. One when r = 0 which affects the
terms involving (A?i - A?j) log r,. Using L'Hopital's rule the
limit of these terms is zero and can be taken into account by

omitting the logarithmic terms from Il, 12, and 13. The

second special case arises when r, =T, in which case we do
not integrate over the area under i-k. This can be accomplished
by setting Aik = Bik =0 1in Il’ 12, and 13. These points

are covered in Ref., 45. Note that in the expression for Il

Bij(ri - rj) + Bjk(rj - rk) + Bik(rk - ri) =0
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except for the case in which r, = 1y in which case

Bij(ri - rj) + Bjk(rj - rk) + Bik(rk - ri) =z, - 2

4.6.4 Initial Strain Matrix

The plastic load vector is given by

(@ = 2r | [WIT rdrdz [Cl{e ) = [K 1(e_) (119)
A%

*
where [k ] 1is the initial strain stiffness matrix and {eo} is
the vector of plastic strains taken to be constant within the

element and evaluated at the centroid.

The integration associated with the initial strain matrix,
Eq. (119), can be found by evaluating the integrand at the cen-~-

troid, 1i.e.,

(Q) = 2r | W1t rdrdz [€1(e,)
v (120)
Q) = szA[ﬁ]T[E]{eo}
where A 1is the cross sectional area, F 1is the centroidal
point, i.e., F = (ri + rj + rk)/3 and [W]T is the [W]T
matrix evaluated at the centroid.
4.6.5 Stress Calculation and Evaluation of Plastic Strains

Stresses and plastic strains are calculated at the centroid
of the element. All calculated quantities such as stress, plastic
strain, shift in yield surface, etc., are output in the principal

direction of orthotropy as defined by the angle p (see Fig. 19).
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4.6.6 Thermal Stress Calculations

Orthotropic thermal stress calculations are allowed. Dif-
ferent thermal coefficients of expansion may be input in the
principal directions of orthotropy. Temperatures are input at
nodes. Since a constant thermal strain distribution is assumed
within the element, the temperatures at each of the three nodes
are averaged. This average value is assumed to hold throughout
the element. The thermal load vector is obtained by multiplying

the thermal strains by the initial strain stiffness matrix

(aP_, )} = [k*]{AeTh} (121)

Th

where

(Beqy) = < 0 >

4.6.7 Material Properties

We assume an orthotropic material whose principal directions
(1, 2,3) correspond to (1, 2, r) as shown in Fig. 19. We can
then express the stress~strain relationship in the principal di-

rections

(6"} = [c]{e”) (122)

where corresponds to the principal direction whose components
are |11, 22, rr, r2, rl, 12] and
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Cpp = Eg(1 - v3pvy3)/a
Cig = Cpq = Eq(vyy + V3yvy3)/a

Ci3 = Cgp = Eq(vyg + vyp¥y3)/a

Cyp = Ex(L = vyqvqq)/A
Cy3 = C3p = Ey(vyg + vy3vyp)/a

Cy3 = Eg(L - vy,vy)/a

Chy = Go3
Cs5 = G5
Cep = CG12
A=1-2

V12Y23Y31 7 Y13Y31 T V12YV21 T V23Vs2

We now express the stresses and strains in the global coordinates

as
{6} = [Cl{e} (123)
where
— T
[c] = [R]IT[C][R]
2 . 2 .
cos B sin B 0 0 0 -sinB cosp
. 2 2 .
sin B cos B 0 0 0 sinf cosB
0 0 1 0 0 0
[R] =
0 0 0 cosf sinP 0
0 0 0 ~sinB cosB 0
. . 2 . 2
|2 sinB cosP -2 sinp cosB O 0 0 (cos™B -sin" B) |
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In the current version of the REVBY program for strain
hardening materials only initially isotropic material behavior
can be specified if a plastic analysis is desired. Either a
linear or nonlinear hardening law may be chosen. For ideaily
plastic materials, isotropic or orthotropic plastic material
properties may be specified. At the end of each half-cycle the

plastic material properties may be changed.

The thermal coefficients of expansion may be specified to
be orthotropic in the principal directions. These may not be

changed at the end of each half-load cycle.

4.6.8 Loads

Concentrated and Line Loads — External nodal forces {Fi]
are expressed in force per unit length of circumference except
at r = 0. The total load applied is therefore 2wr{Fi]. At
r = 0 there must be Fr = FG = 0, and Fz represents actual

force, in pounds for example.

Surface Tractions — Distributed surface force/unit area can
be specified at nodes in the r, z, and 6 directions. 1If we
assume a linear variation of traction across the face, i.e.,

p=a+ bt (Fig. 21), we arrive at the consistent load vector

F, 1 1l)ip;
1 3 6fl

= w(ri+rj)L
7 1 1 l
i 6 311P;

where P; corresponds to the traction at node 1i.

(124)

Note: All loads are incremented proportionally from the critical
load.
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Fig. 21 Distributed Surface Forces

4.6.9 General Comments

] Note that for orthotropic material properties, the R-Z
axes and the axes of principal orthotropy must be coincident,

i.e., no rotation about the 6-axis is allowed.

. This element is available in the REVBY module.

4.7 Membrane Triangles

4.7.1 Introduction

The membrane triangles described in this section are classi-
fied into the following three categories: 1) 3-node constant
strain, 2) 6-node linear strain, and 3) 4- and 5-node hybrid

elements. The terms constant, linear, and hybrid refer to the
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strain distributions that exist in the element as a consequence
of choosing an assumed displacement variation. A brief descrip-
tion of the elements associated with these three categories

follows.

Constant Strain Triangle (CST) — This well-known plane
stress membrane element is one of the most widely used elements
for the idealization of membrane structures. Its derivation is
based on the assumption of a linear distribution for the in-plane
displacements u and v, and consequently, leads to a constant
strain state within the element. Each vertex is allowed two de-
grees of freedom (the in~plane displacements u and v) for a
total of six degrees of freedom for the element. Consistent with
the total strain distribution, the initial strains (plastic
strains) are assumed to be constant within each element. Stiff-
ness and initial strain matrices have been developed and success-

fully used in Refs. 6, 8, and 30.

Linear Strain Triangle (LST) (Fig. 22) — In regions of high
strain gradient, the CST triangle is not sufficiently accurate to
be used in a plasticity analysis unless a very fine grid is em-
ployed. The linear strain triangle (LST) remedies this short-
coming of the CST element. The assumption of a quadratic dis-
tribution for the in~plane displacements allows for a linear
strain variation within the triangle. Two degrees of freedom at
each node (u,v) for each of the six nodes (three vertex and
three midside nodes) give this element a total of 12 degrees of
freedom. The initial strains are assumed to be constant within
each element and are evaluated at the centroid. Both stiffness
and initial strain matrices have been developed and successfully

used in Refs, 8 and 30.
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Fig. 22 Linear Strain Triangle

Hybrid Triangles (HST) — In transition regions, i.e., re-
gions in which stresses and strains change from rapidly varying
to slowly varying, it becomes convenient and efficient to switch
from linear strain triangles to constant strain triangles. This
is accomplished by using four~and five-node triangles to main-
tain compatibility with both the CST and LST elements. These
elements together with the CST and LST elements were originally
used in Ref. 4 and are referred to as the TRIM 3 through TRIM 6
family. For these mixed formulation hybrid elements, the dis~-
placements along edges may vary quadfatically or linearly, de-
pending on whether an LST or CST triangle is contiguous to the
respective sides. Again, the plastic strain distribution is

assumed constant within each element.
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4.7.2 Displacement Assumptions

Using a local centroidal coordinate system with the x-axis
parallel to side 1-2 shown in Fig. 22, the in-plane displace-
ments u and v may be written in terms of the area coordinates

®ys Oy, and W

u = wl(Zwl ~- l)ul + w2(2w2 - 1)u2 + w3(2w3 - 1)u3
(125)
+ 4w2w3u4 + 4w3wlp5 + 4w1w2u6
or in matrix form as u = [N]{uo] where [N] 1is a matrix of
shape functions representing the assumed displacement field

within the element.

The terms uy (i = 1-6) refer to nodal displacements at the
vertex and midside nodes, the subscript o refers to the nodal
displacements, and the area coordinates are written in terms of

the local x,y coordinates in the following matrix form

r r - - e ] ™~
@) X)¥37%3Y)  ¥p7¥3  X3TXy| 1
) |
4 ®, ?’ 24 [%3Y17%1Y3 Y37V Xp7X3| o X % (126)
j
- - f o |
(3 [ X1Y)" %Y, V1Y FptXq) Y
or
w1\ [ZA1 b1 al 1
w = L 2A b a.l¢ x.~
2 V™ 24 |**2 2 2 'i {
“3 283 b3 )iy,

An expression similar to Eq. (125) can be written for the wv

component of displacement. The particular form of Eq. (125)
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represents a quadratic polynomial in the coordinate variables x
and y and consequently is associated with the sixmode LST
element. A linear polynomial representation of the displace-
ments (CST element) is obtained from Eq. (125) if we enforce the

following conditions
= 1 . = 1 . = 1
u, 2(u2+u3) ; ug 2(u3+u1) ;o Ug 2(ul+u2)
The bhybrid (HST) element is obtained by enforcing any one, or
two, of the above conditiomns.

4.7.3 Stiffness Matrix

Neglecting the effects of large geometry changes, the strain
displacement relations are determined by applying the appropriate

differential operator on the displacement functions as

[ 0 '
rbx\ S% 0
ul 3 i u )
e = [D] = 0 —|{ ° (127)
< y > v oy |3 V)-"
9o 2
[yxx | OX ox |

The strain-nodal displacement relations may be represented

in matrix form as

(e} = [D][N][uo} = Wl{u] (128)

For the LST and HST element the [W] array is a linear com-
bination of the coordinate variables x and y and may be

written as the sum of the following terms

W] = [Wy] + [W,]x + [Wyly (129)

3 em 3em 3em 3em
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where m may be 8, 10, or 12. Note that the [W] array will
vary with the number of nodes used for the element. For example,
for the four-node element, appropriate transformations associ-
ated with the displacements removed from two of the three midside
nodes must be applied to the full (3x12) [W] array to obtain
the correspondingly reduced (3x8) array. Correspondingly,

the strain-nodal displacement equation for the CST element is

represented by an expression of the form of Eq. (127) with

Wl = (W] (130)
3eb

The local stiffness matrix for an element of uniform thick-

ness is represented in the following form

[k] = h (W1T[E][w]dA (131)
A

where [E] 1is the array of elastic coefficients relating stress

and strain components in local coordinates.

For the LST and HST elements the form for [W] given in
Eq. (129) leads to the following expression for the local stiff-

ness matrix

T Ah 2 2 2 T
L) = ity TEI 0, + G oy + ) 0, 1R T, )
+ 88 Gy, + myy, + xyg) (W, ITTEI(W,] + (w1 T(ET[W, 1)
(132)
Ah 2

+ 82 (57 + v + v lwg 1 TR W, ]

where m = 8, 10, or 12. Similarly, for the CST element the

expression for |k] reduces to
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(k] = Ab[W_]T(E][W,] (133)
606
The local stiffness matrices [k] are then transformed to
global coordinates by premultiplying them by [T]T and post~
multiplying by [T], where [T] transforms the displacements

from local to global quantities,.

4.7 .4 Geometric Stiffness Matrix

For two dimensional planar problems it is conjectured that
large geometry changes (e.g., localized near a crack tip) are
basically those involving large rotations. Additionally, the
presence of large membrane stresses significantly affects the
out-of-plane stiffness of these elements when they are used for
built-up structures. This is important in analyzing large de-
flection and stability problems. On this basis, the inclusion
of small strain, large rotation effects (geometric nonlinearity)
is effected through the use of the following nonlinear incre-

mental strain-displacement equations

2
_ Sdu 2 | 1700w
Aex X + 2(A¢b) + 2K8x >
. 2
Aey = S;_ + 2(Awé) + 2<Gy > (134)

_ oAu SOV AW AAW
Aryxy T Jdy T T Dy

where A represents an incremental change between two adjacent

states of the loading history, and

o, =} - %}j-) (135)
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The displacement w 1s in the local =z-direction. The dis-
placement assumption used for w 1is the same as that used for u

and v 1in corresponding elements.

The nonlinear terms of Eq. (134) give rise to the geometric
(or initial stress) stiffness matrix. Its local form may be

represented as follows for an element of uniform thickness

k'] - (e1TIs11a]dA (136)
A

The matrix [Q] is used to express the rotations in terms of

nodal displacemehts, e.g.,

AW
» X

b

(oo L= taltou) ECED

A J
k Z

where [Auo} now includes the w terms and (3] 1is, using a

convected coordinate (updated geometry) approach for the solu-
tionof geometric nonlinear problems merely an array of stress

resultants N _, N , N , for each element (or node).
X y Xy

Centroidal values of the stress resultants are used in all
order elements. The local geometric stiffness matrices of
Eq. (136) are then transformed into the global system by pre-
multiplying them by [T]T and postmultiplying them by [T].

4.7.5 Initial Strain Stiffness Matrix

The treatment of plasticity within the PLANS system requires

the incorporation of two basic assumptions. The first is, in
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determining the effects of plastic flow within a body, plastic
strains are interpreted as initial strains; the second is that
total strains (or their increments) may be decomposed into
elastic and plastic components. The local initial strain matrix
that appears in the equilibrium equations may be written in

terms of previous variables as

[k*] = h [W]T[E][N*]dA (138)
A

where [N*] represents the matrix of shape functions used to de-
scribe the assumed plastic strain variation within an element.

If we choose to consider the plastic strain state at the centroid
of the element as representative for the element (regardless of
the total strain variation) then Eq. (138) may be written as

(K] = Ab[w, J[E] (139)

me3
where m = 8, 10, or 12 for the LST and HST elements, and

[k'] = Ab[w_1[E] (140)

for the CST element.

Plastic Load Vector — The product of the initial strain
matrix and the vector of plastic strains represents the "effec-
tive" plastic load for the structure. This load is applied in
addition to the prescribed set of mechanical loads to determine
the displacemeut state. The aforementioned product is determined
at the element level; that is, rather than assembling an initial
strain coefficient matrix for the entire structure and multiply-

ing by the vector of plastic strains, the vector product of the
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element initial strain matrix and plastic strains for the element
is assembled for the entire structure. Thus, the local plastic

load vector may be represented in the following form

N
@ = ) [K1,(ed g (141)
i=1 me3

p
Yxy)

i

where m = 6, 8, 10, or 12, N = number of plastic elements,

P P p
and €2 ey, and vxy

This vector is then premultiplied by [T]T to transform it to

represent plastic strain components.

global coordinates.

4.7.6 Stress Calculations

The total strains for each element are evaluated at the
centroid using the strain-displacement relations previously dis-

cussed. For small deformations the linear relation becomes

(e} = [Wllfuo} (142)

3em
where m = 8, 10, or 12 for the LST and HST elements, and

(e} = [W_ I{u_} (143)
3e6

for the CST element. Once again, note that [Wl] will vary de-

pending on the value of m.

The nonlinear contribution to the strains, as expressed in
Eq. (134) requires the [Q] array to be evaluated at the cen-

troid. Stresses and plastic strains are also evaluated at the
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centroid for LST, HST, and CST elements. Although the stresses
in an LST or HST element are not uniform, but vary from node to
node within an element, the centroidal value is used to repre-
sent the stress state of the element. The plastic strains, on
the other hand, are a priori assumed to be constant within the
element regardless of the element type (e.g., LST, HST, or CST).
It should be noted that using a constant centfoidal value of
stress for the LST and HST elements does not degrade the stiff-
ness influence coefficients for these elements. It does, how-
ever, influence the nonlinear response of the structure in that
plastic strains are determined from these stresses. The inaccu-
racies associated with using centroidal stresses is most pro-

nounced in regions of rapid stress gradients.

4.7.7 Thermal Stress Calculations

Nodal temperature input is converted to average element tem-
peratures and subsequently to centroidal thermal strains for LST,
HST, and CST elements. Orthotropic thermal coefficients of ex-
pansion may be specified in the principal material directions of
orthotropy. The thermal load vector is determined in the same
manner as the plastic load vector, e.g., as the product of the
initial strain matrices and the vector of thermal strains for the

element and summed over all the elements of the structure.

4.7.8 Material Properties

All elastic material properties are constant within the ele-
ment and are assumed to be temperature independent. Orthotropic
properties may be specified by defining the necessary material
constants and the direction of the principal axis of orthotropy,

B, for each element. In general the stress-strain relation may
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be written in an arbitrarily rotated, orthogonal, 1-2 plane
(Fig. 22) as

h [C C 01 1e44)

%11 11 12 {11
q 9529 = 1C21  Ca2 0 1€ | (144)
- 0 0 ¢
12 33) {Y12J
where
Cqp = Eq/ (1 = vyqvyy)
Cio = V12%11
Cog = Ep/ (1 = vypvy5)
Cy1 = V21C09
C33 = Gy
d C..C.. -C%. >0, E., E d 0 . .
an 11°22 12 > 05 Eq5 E,, and Gy, > for a positive defi-

nite stiffness.

Thermal coefficients of expansion in the 1 and 2 direc-

tions may be specified independently.

The von Mises yield criterion is used to define the limits
of elastic behavior for isotropic materials. Hill's yield condi-
tion is used for materials having different yield stresses in the
two orthogonal global directions. This yield criterion for plane

stress is written as

2 2 2
f = (G+H)o]_.|_ + (F+H)c522 ~ 2H011022 +2Nfr12 = 1 (145)

where

135



2

:

1/X

2

F+H 1/Y

M = 1/%% + 1Y% - 1722

IN = 1/T2

and X,Y,Z represent the normal tensile yield stresses in the

1, 2, and 3 directions, respectively, and T 1is the yield
stress in shear imn the 1-2 plane. Hill's condition, Eq. (134),
reduces to the von Mises yield condition for isotropic yield
stresses. Furthermore, the following condition must be enforced
to ensure the convexity of the orthotropic yield surface with

respect to the origin in stress space

2
1

(33 + 5 - 33) >0 (146)
X Y 7

1

X2Y2

Fl=

Three options are available to describe the nonlinear mate-
rial behavior: 1) elastic-ideally plastic, 2) elastic-linear
hardening, and 3) elastic-nonlinear hardening. For the first
option only the yield stresses, X,Y,Z, and T need be speci-
fied. For hardening behavior the kinematic hardening theory as
proposed by Prager (Ref. 42) and modified by Ziegler (Ref. 37) is
used to describe the subsequent hardening behavior of the mate-
rial beyond initial yielding. For linear hardening the slope of
the tensile stress-plastic strain curve is specified (tangent
modulus). If nonlinear hardening is desired the Ramberg-Osgood
parameters (Ref. 38) must be specified (see Section 3.4 for fur-
ther discussion). For orthotropic kinematic hardening the
Ramberg-0sgood parameters must be specified for each of the

three stress components.
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4,7.9 Loads

The following mechanical loads may be applied to the mem~

brane elements:

o Concentrated forces and moments applied at specified
nodes in the global directions in the units of force

or force times length.

L Distributed edge loads in the plane of the element.
These are assumed to vary linearly from node to
adjacent node along the edge on which the load is
applied. The magnitudes of the loads are specified
in the global directions at each pair of adjacent

nodes.

The consistent load vector, {P}, associated with the dis-~
tributed load case is determined from the shape function, [N],
Eq. (125),

(P) = | [N1"(p)da (147)
A
4.7.10 General Comments
b The same assumed constant plastic strain distribution is

used for all of the elements of the membrane type (CST, HST, and
LST). Although this distribution is compatible with the total

strains in the CST elements only, it should nhot introduce a sig-~
nificant degradation of the accuracy associated with the HST and

LST elements.

° Centroidal values of stresses and strains are used for all

the elements.
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o Although the situation illustrated in Fig. 23 is allowed
(no error message triggered) it is not recommended. The dis-
placement field along the common edge A-B from each of the two

adjacent elements will not be compatible.

° The applicable modules for these elements are BEND, OUT-OF-
PLANE, and OUT~OF-PLANE-MG. They are also available in a special
fracture module called FAST as well as in preliminary versions of

OUT~OF~PLANE designated as PLANE.

quadratic edge displacement
A / D

linear edge displacement

Fig. 23 1Incompatible Edge Displacements Along A-B
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4.8 Triangular Flat Plate Element — Bending and Membrane

4,.8.1 Introduction

This element is used for analyzing thin-walled structures
where local bending as well as membrane effects are important.
The element is of constant thickness, triangular planform, and
has 12 degrees of freedom at each node (see Fig. 24). It is
obtained by superposing the Quadratic Strain Membrane Triangle

of Felippa (Ref. 16) and Tocher and Hartz (Ref. 48), with the

Fig. 24 Triangular Plate Element - Bending and Membrane
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quintic displacement bending triangle of Bell (Ref. 47) and
Cowper et al. (Ref. 50). The local coordinate system is defined
at the centroid of the element. The local x-axis 1is parallel
to the 1-2 edge. The local y-axis is perpendicular to the
x-axis and in the plane of the element. The local z-axis is

perpendicular to both of these axes.

4.8.2 Displacement Assumptions
=a + ax+ a,y+ + a 3
YT 9% ™% oY T e 107
3
v = bo + blx + bzy + ... + bloy (148)

] 3
w=cg + blx + Co¥ + ...+ ClOy + ... c21y

The in-plane displacements u,v are complete cubic poly-

nomials. The 20 undetermined coefficients (ai and bi) are

related to nodal degrees of freedom through the matrix [Am]-l.
These nodal quantities are Uss Vi u’xi, V’Xi, u’yi, V’yi where
i=1, 2, 3, and U,V the centroidal displacements
(a} = (A 177(d ] (149)
m m m

The 20 in-plane degrees of freedom associated with u and
v are reduced to 18 in~plane vertex nodal degrees of freedom
by Gaussian elimination (equivalent to static condensation) of

the centroidal degrees of freedom U,V - The remaining nodal

degrees of freedom are wu,, v., 9 , €, €_, € , where ¢
i’ i’ Tz, X, V. XY . Z.
i i i i i
is the local rotation about the =z-axis, 6, = %(—Bui/ay +
i
= = Y = D I3
avi/ax), and exi Bui/éx, eyi Pvi/ay, exyi 2(Mui/3y +

Bvi/ax) are the tensor components of the membrane strains.
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The out-of-plane displacement w 1is a complete quintic
polynomial in x,y. The 21 coefficients (Ci) are related to

the vertex nodal degrees of freedom Wes W w

x.? y’wxx’
>4 » V1 8y

w s W , and the normal midside nodal rotations w
3 YYi H] XYi bl ni

through the matrix [Ab]-1

-1

fay} = [A)] 74} (150)

The 21 degrees of freedom are reduced to 18 by requiring
that the normal slopes vary cubically along an edge (see Ref. 49),
thus eliminating the three normal slopes at the midside nodes.
The local bending degrees of freedom remaining at each vertex
node are w,, 6 = W , B = -y , and «x = W , K =
i X, sV . X, X, .
i i i i i i
w s Ko, =W .
2 VY5 Y » XY 5
The bending and membrane stiffnesses are then superposed to
obtain a 36 degrees of freedom element with the following

12 local degrees of freedom at each node u, v, w, OX, ey, @z,

y

4.8.3 Formation of Stiffness Matrix

The membrane and bending stiffness matrices may be written

as
~T T -1
k] = blA_] tw_1T[ET[W_Jdala_]
A (151)
[k ] = b’ ie1%ra 17T | w 1T(EI[w, 1dara, 17 C])
b 12 [ b b [ [ b [ b
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Here h is the plate thickness; [Wm] and [Wb] are the

matrices relating the strains to nodal parameters as

. [ 3du
ex'“ 3%
_) du A
ol 7% )T D)y
. bu  dv
xy) Oy %y
) (152)
[k W
X sy XX
{kb} =£Ky = =7 W’yy :.,= -Z[Wb]{ab}
2% § 12w
\ Xy/.' K ’Xy

and [C] 1is the condensation matrix for the bending component.
[E], the matrix of elastic constants relating stress to strain,
is discussed more fully in the section on material properties.
After formation of the full 20 degrees of freedom membrane
stiffness matrix it is reduced and reordered. The area integra-
tion for bending and membrane is performed using Gauss-Legendre

integration of fourth order.

4.8.4 Formation of Geometric Stiffness Matrix

The geometric stiffness matrix was developed to be used with
an updated coordinate system approach (Ref. 2¢) for solving geo-
metric nonlinear problems. Small-strain moderate rotation as-
sumptions were made to arrive at the strain-displacement equa~

tions used., These are
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mo_ 1(e? 2y _ou , 1w 2 - 2
€x ~ et 2(wy + wz) T ox 2(8x) + B(V,x u,y)

"o + i(wz + mz) - AR éﬂ\z + i(v _-u )2
€y~ 2Y % z dy  2\dy/ BV x Y

| (153)
PPN VI VR
Yxy = ®xy Xy dy @ ox d0x Jy

b b b
€ = -zZw , € = ~2zW s v = ~22zZw

S » XX y A Xy » X

where W s wy, and w_  are infinitesimal rotations.

The component of the geometric stiffness that affects the

bending stiffness is written as

T -T N LT n -1
(kg ] = (€114, ] [w, 1 NI[W, 1 dala 17"(C] (154)
A
Here
N
X Xy
[N] =
N
Xy y
and
1’W,x

ﬁ\ = (W, 1(a,)
W
» Y

N
where [Wb] relates the slopes to the nodal parameters a . The
geometric stiffness that affects the in-plane stiffness is
k. 1= o)A 17T | @ 1T Jaara 17t (155)
Gm Xy m m m m
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A A
where o_ = ([W_]{a_} and ([W_] is a row vector relating the
z m- - “m m

rotation W, to the nodal parameters {am].

These matrices are added to the conventional stiffness
matrices and reordered and reduced in the manner discussed in the
description of the conventional stiffness matrices. For problems
involving geometric nonlinearity all stiffness matrix integrations
are performed using fifth order Gauss-Legendre integration over
the triangular regions. The values of Nx’ Ny’ and Nx used
to form the geometric stiffnesses are obtained by averaging re-

spective nodal quantities from each of the three nodes.

4.8.5 Formation of Initial Strain Matrix (Plastic Load Vector)

The membrane and bending initial strain matrices are written
as (Ref. 26)

* -T T —
(k] = [A] (w_1TE1[Clda

(156)
* T -T T =
(1 = c1ma ) w1 (E1(C1dA
A

The initial plastic strains are assumed to vary linearly
from node to node within the element and have an arbitrary varia-

tion through the thickness at the nodes, i.e.,

(" (x,y,2)) = [C(x,y)1les (2)] (157)

where [C(x,y)] is a linear function matrix in (x,y) relating
the plastic strains in the element to the nodal plastic strains.

The area integration for the bending and membrane components of
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the initial strain stiffness matrices is performed using Gauss-
Legendre integration of fourth order. The membrane component of
the initial strain matrix is condensed from 20 to 18 degrees

of freedom using Gaussian elimination.

The plastic load vector {AQ} is the product of the initial
strain matrix and the vector of initial strains or, for plastic

analysis of plates (and shells), inelastic forces and moments,

(4Q} = [k 1{ne) (158)
where
r'fﬁexdz 1]
fﬁeydz
f/&yxydz
f:f\exzdz
féeyzdz
P
._f/kyxyzdz_i
(e} = { —— = - f
fAeXdz }
_fAyiyzdzn-
]
| [ [ e, dz ]
%\; fﬁygyzdz_ q

The plastic strains are evaluated at the nodes of the tri-

angle and integrated through the thickness using Simpson's rule.
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Up to 20 layers (21 points) are allowed. The number of layers
must be an even number. If the number of layers is not speci-
fied then the default of 10 layers 1is used. This has been

found to be sufficient for most problems.

4.8.6 Stress Calculations and Evaluation of Plastic Strains

Stresses are calculated at each of the three nodes of the
triangle. There is no averaging of membrane strains or curva-
tures from adjacent triangles. Since the orthotropic material
properties are given in principal directions of anisotropy, all
calculated stresses are in the element material coordinate sys=-
tem defined by the angle B (see Fig. 24). These directions
must also be used in conjunction with Hill's orthotropic yield
criterion. Stresses are also calculated at each integration
point through the thickness and will be printed out at these
points if requested. Otherwise just top and bottom surface

stresses and strains are output,

4,.8.7 Thermal Stress Calculations

Orthotropic thermal stress calculations are allowed. Dif-
ferent thermal coefficients of expansion in the principal direc-
tions of orthotropy may be specified. A parabolic temperature
distribution through the thickness is assumed. Temperatures at
the top, bottom, and middle surface through the thickness at
each node are input. Like the plastic strains, temperatures are
assumed to vary linearly from node to node. Temperatures at each
layer through the thickness are determined from the assumed para-
bolic distribution. The thermal load vector is obtained by
multiplying the thermal strains by the initial strain stiffness

matrix
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(AP [k 1{2e.,, )

Th) = Th
where

~

[ a,Tdz

f aszz

{Ae }=(——~—P (159
Th f a;Tzdz )

f a,Tzdz

0 /

. ,,.i

The integrations are evaluated in closed form based on the para-

bolic temperature distribution.

4,8.8 Material Properties

All material properties are constant within the element and
are assumed temperature independent, Elastic properties are as-
sumed to be orthotropic with the direction of the principal axis

of orthotropy, B, specified for each element

[ E Vv, ,E
-~ 1 1271 )
o 0 € C C 0
1 1-v21v12 1—v21v12 1 \ 11 12
: v..F E
! 2172 2 {
Oy ) = — = 0 | e = |C C 0 |{{e)}
2 ! 1 Vo1Y12 1 Vo1Y19 i 2 21 22
712 0 0 G12] V12 0 0 Cgy
(160)
where C11C22-Ci2 > 0, El’EZ’G12 > 0 for positive definite

stiffness. Thermal coefficients of expansion in the 1 and 2

directions may also be specified independently.
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Plastic material properties may be assumed to be ortho-
tropic with Hill's yield criterion for plane stress used for

initial yielding. This yield criterion is written as

f = (G+H)oi + (F+H)o§ - 2H0102 + 2NT%2 = 1 (161)
where
o - L
X
F+H=-l—2
Y
oLk g
X Y Z
o - L
T

and X,Y, and Z represent the normal tensile yield stresses in
the 1,2, and 3 directions, respectively, and T 1is the yield
stress in shear in the 1-2 plane. The following additional

stability criterion must be satisfied by the yield stresses for

Hill's equations to be used

2
S iG>0 (162)
XY X Y Z

Kinematic bhardening theory as proposed by Prager (Ref. 42) and
modified by Ziegler (Ref. 37) is used to describe the subsequent

hardening behavior of the material.

Three different plasticity options are available: 1) elas-
tic, ideally plastic, 2) elastic linear strain hardening, and

3) elastic nonlinear strain hardening using a Ramberg-Osgood
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power law representation of the stress-strain law. For ideally
plastic materials only the yield stresses X,Y,Z,T mneed to be
specified. For linear strain hardening the slopes of the

plastic portion of the stress-strain curves (tangent moduli)

must be input for each of the three stress components. If non-
linear hardening is desired then two Ramberg-0Osgood shape parame-
ters (see Section 3 for further discussion) for each stress com-

ponent must be specified.

Different stress~strain components may have different
hardening laws, e.g., O "€y nonlinear hardening, oy-e

y

linear hardening, and Txy-vxy nonlinear hardening. However,

if one component is elastic-ideally plastic all must be., Addi-
tionally, at the end of each half-cycle of loading, the plastic
material properties may be changed. Elastic properties may not
be changed at the end of each half-cycle.

4.8.9 Loadings

The following mechanical loads may be applied to the plate

element:
° Concentrated forces and moments

° Distributed edge loads perpendicular to and

in the element plane

© Distributed surface loads perpendicular to

and in the plane of the element.

Concentrated Forces and Moments — These are applied at

specified nodes in the global directions.

Edge Loads — These are assumed to wary linearly from node to

adjacent node along the edge on which they are applied. They are
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applied in the element local coordinate system. The three com-
ponents of the distributed edge load are specified at the ith
and jth node of the edge. Edge 1 is defined to be the side of
the element connecting nodes 1 and 2; edge 2 is defined to be
the side connecting nodes 2 and 3; and edge 3 is defined to be
the side connecting nodes 3 and 1 (Fig. 24). Applicable members
with the same distribution along the respective edges are then
specified. Consistent load vectors for these loadings are cal-

culated in the element routines
’u
- T — .J =
[N 17(P_}ds ;¢ Y= [N (a)
S l v

-T

(B} = [A]

(163)

(e} = [c171a,17F| [N 17(B,)ds ; (w) = [N l{u,)
S

These are then reordered and reduced as described in the initial

strain section.

Distributed Surface Loads — The three components of the sur-
face loads are assumed to vary linearly from node to node in the
plane of the element. They are applied in the element local co-
ordinate system perpendicular to and in the x,y directions.

The three components of the surface load P,»>P,>P, are specified

y
at the 1,2,3 nodes of the element. Applicable members with the
same values of components of the respective nodes are then speci-
fied. Consistent load vectors are calculated in the element

routines. These are determined from the following relatioms.
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L= N May)

(w) = [N, 1{a,)

The load vectors can be written as

N ~T = T~
(2} = (4] [N _1*{p )da
A
(164)
_ T -T = T,
()} = [cl7[a,] (N1 (py }da
A
These are then reordered and reduced as in the initial strain
section. '
4.8.10 Equilibrium Correction

We may write the equilibrium correction terms for the plate

element as (Ref. 36)

(R} = (B} - | W1'{o, }av (165)
vV
where
S
m ,
W) = = - eme]
N

Assuming a linear stress variation from node to node this can be

rewritten as
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R)=(B) - | [-==—=mmm o e - da

(166)

The {Pi] component is formed in the load vector formation
and merely consists of multiplying the consistent load vector by
the multiplicative scalar appropriate to the current load value.
The second component is wvirtually identical to the initial strain
matrix and is formed at the same time. It is multiplied by the
vector of stress and moment resultants. The latter is obtained
by numerically integrating the stresses through the thickness

using Simpson's rule.

4.8.11 General Comments

® In general, displacements and rotations between elements
along an edge will not be campatible if the adjacent elements

are not in the same plame. This is due to the assumption of a
quintic polynomial representation for the out-of-plane displace~
ment w and a cubic representation for u and v. If the
structure is planar then displacements and rotations will be com-
patible and membrane strains and curvatures will be identical in

elements with common nodes.

° The displacements and rotations are assembled in the global
system, Membrane strain and curvature degrees of freedom are as-
sembled in a "local global system." The local coordinate system
of the first element specified that contains a node becomes the

reference system for that node. For this reason the out-of-plane

angles between elements should not be large and each grouping of
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elements about a node should be a "shallow shell." If this is
not so, for example, at a node on the corner of a box, the mem-
brane strains and curvatures should not be assembled with those
of an element with which there is a large angle. To avoid link-
ing all of the degrees of freedom of the two nodes, multiple
definition of a point with two node numbers can be made and the
same coordinates assigned to the two nodes. Multipoint con-
straints can then be used to selectively link displacement and
rotation degrees of freedom to ensure continuity of these quan-

tities.

o This element is available in the BEND module.

4.9 TIsoparametric Hexahedron

4.9.1 Introduction

A review of the present state of isoparametric elements is
presented in Ref, 51. These elements are characterized by a
mapping procedure used to map a simple shape in the local or
natural system into a curvilinear shape (actual shape) in the
global system. For the three dimensional solid- element pre-
sented here, a cube in local coordinates is mapped into a hexa=-
hedron in global coordinates (Fig. 25). The mapping function can
be written in the form

X\' X
1
S .
y =), N Lm) (ys (167)
i
z z,
) 1

where x, y, and =z represent the global coordinates, £,(,

and represent the local coordinates, and X, represent the
n P i

153



a) Local Coordinates b) Global Coordinates
Fig. 25 1Isoparametric Hexahedron

nodal coordinates in the global system. The mapping function,
or shape functions, Ni, have the property of being unity at

node i and zero at all other nodes.
4.9.2 Displacement Assumptions

The element deformation is described using the same shape

functions as in Ref. 51, hence the name isoparametric

\

o= ) N[E,Cn)e; (168)

7 .
where ¢i represents the unknown generalized degrees of freedom

associated with an individual element.

With the use of "relative coordinates'" we now derive a

single isoparametric hexahedron which has a variable number of
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nodes, of between 8 and 20. 1In practice this is especially
useful where it is necessary to generate a mesh containing adja-
cent elements with different numbers of nodes, as occurs when a
mesh changes character, e.g., going from a more coarse to a
finer mesh. For a more detailed description of the use of rela-

tive coordinates see Ref. 52.

For an isoparametric hexahedron of between 8 and 20 nodes

the shape function is as follows

¢ = } N].'_d)i i=1, 2, ..., 8 plus any midside nodes (169)
i

where Ni = P, for the midside nodes (i =9, ..., 20), as they

exist, and Ni = P, - %(PI + P; + Py) for the corner nodes

J
(i=1, ..., 8) where I, J, and K represent the midside

nodes, as they exist, adjacent to corner node 1i.
The P functions are given as follows

P, = (L4 E)+ L)L +n) (170)

for the corner nodes and

P,= (- DA+ L)@ +n) =0
P, = (14 £ )L - £ + 1) £, =0 (171)
P= i+ £+ LM -0 ny =0

for the midside nodes, where &O = iﬁi, CO = CCi, and Mg = MMy -

We can see from Eqs. (169) and (170) that the shape func-
tions are built-~up from an eight-node hexahedron representation
(no midside nodes existing). When we have no midside nodes we

arrive at
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.
Sx 0 0
ON’
0 '5;—' 0
ON’
0 0 =
[B] = o oz
N
a—y—— 0 0
ON’
0 Sk 0
o, v
'_BZ ox |

In order to evaluate the terms in the [B] matrix we use

the relationship

BN’} aN'\}
ox . Of
'l _ -1yt
. L

where J 1is given by Eq. (175).

For an arbitrary element configuration the explicit integra-
tion represented by Eq. (174) cannot be carried out. We employ
a Gauss quadrature numerical integration scheme as an efficient

procedure (Ref. 45).

4.9.4 Geometric Stiffness Matrix

There is no geometric stiffness matrix currently available

with this element in PLANS.
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4.9.5 Initial Strain Stiffness Matrix
The initial strain stiffness matrix is given by
1 .1 1
(k') = [BIT[C](det J)dedtdn (178)
~1"-1"~1 |

where J 1is given by Eq. (175) and [C] 1is defined in Sec-

tion 4.9.8 for this element. To obtain Eq. (178) the initial
strains are assumed to be constant throughout the element and
evaluated at the element centroid. The plastic load vector is

given by
(Q} = [k 1fe,) (179)

4.9.6 Stresses and Strains

The element stresses are found at the centroid from

{oc} = [C]{(eT-eo}

They are given in the principal material directions. The total
strains are obtained from Eq. (176). The initial strains are
due to both plastic and thermal effects and are the same as used
in deriving the effective load. The elastic coefficient matrix,

[C}], 1is given in Section 4.9.8 for this element.

4.9,.7 Thermal Loads

Thermal loads can be applied to an element by specifying

the nodal temperature, T, and coefficients of expansion, O .

The thermal strains are ¢ = € = ¢ = a.T, e = €
XX VA ZZ i Xy vz

exz = 0. These are treated as initial strains and the load

vector is obtained from Eq. (179).
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The nodal temperatures are input only at corner nodes and
are averaged to obtain an element temperature for use in the
thermal load vector. The a, may be different in each of the

principal directions of orthotropy.
4.9.8 Material Properties

The elastic coefficient matrix, [C], corresponds to an
orthotropic material and can be expressed as

[Cc] = [Q]T[CO][Q] (180)

where [Co] represents the reduced coefficient matrix along the
principal axes of orthotropy and [Q] represents the transforma-

tion into global coordinates. The terms of [Co] are as follows

Cip = Ep(1 - vgyvy3)/a
Cip = Coy = Eq(vyy + vaovyg)/a
Cyq = Cgq = Eq(vyg + vi5v95)/A

Cpp = Ex(L = vyqvad/a

Cy3 = C3p = E,(vyq + VygVyy) /A

C = E

33 = B3
Cot = C12
C55 = Gp3
Ces = C13

where
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<
<

12 21
B, ~E,
Y13 _ V31
By By
Y23 _ Y32
By By

The transformation is taken first as a rotation about the

z-axis, then about the x-axis, then about the y-axis, i.e.,
Q = QQ.0,

Three types of hardening laws may be specified for these
elements. First, elastic-ideally plastic behavior based on
Hill's criterion for orthotropic materials may be input. This
requires inputing the three yield stresses in the principal di-
rections of orthotropy and the three yield stresses in shear
with respect to these planes. The two other types of hardening
may currently be used for initially isotropic material behavior.
These are linear strain hardening and nonlinear strain hardening
based on a Ramberg-0Osgood representation of the stress-strain
law. At the end of each half-cycle of loading the plastic mate-

rial properties may be changed.

4.9.9 Loadings

Two different types of loading conditions can be applied. A
consistent load can be applied across a face of an element. A

concentrated load can be placed at a node.

Surface Tractions — The consistent load vector is obtained

from the last term of Eq. (173). For a consistent load we
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represent the applied tractions in the same functional form as

the generalized unknowns, i.e.,

{T} = [N][Ti} (181)

where [Ti} represents the applied nodal tractions. Substitut-
ing Eq. (181) into Eq. (173) and integrating in the local co-

ordinate system we arrive at

1 1

(F,) = (1T [N]adn fan ® |07, ) (182)
-1 -1

where nl and nz define the plane over which the traction is

applied and

= a2 & B2 4+ 2
where
Wl (20 5x2>
\3n, 1, ~ dng on,
/5x3 Bxl Bxl BXB\

B = ; j
\aql aqz Bnl anzl

C = ( x> 8x1>
ony My 9ng Oy

From Eq. (182) we see that the form of the load depends on
whether midside nodes appear. For a face with no midside nodes
the load varies linearly. When a midside node appears the load
varies quadratically in the direction of the edge of the mid-

side node. It is important to note that the input is the applied
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tractions T, in Eq. (181), at nodes and not the total load.

Concentrated Loads — A concentrated load can be placed at
any node by simply specifying its magnitude (total load) and

direction. Thus, in this case we are actually inputting Fi'

4.9.10 General Comments

o Integration Order — A rectangular parallelepiped, in global
coordinates, of eight nodes requires a 2 x 2 x 2 point Gauss
integration while a rectangular parallelepiped of twenty nodes
requires a 3 x 3 x 3 point Gauss integration. Care must, how-
ever, be taken as the element diverges from a parallelepiped.

An exact stiffness can no longer be calculated but a good ap-
proximation can be found by increasing the order of integration.
Orders of integration which are too low lead to elements that
are too flexible. Orders of integration that are too high cause
roundoff problems. It is suggested that when a choice has to be
made the order of integration be kept on the low side. This
eliminates any roundoff errors and since element stiffnesses are
generally too high the error in the stiffness matrix is in the
right direction. 1In general, it is best to keep the element as

rectangular as possible.

. Orthotropic properties may only coincide with the global

axis currently.

L This element is available in the HEX module.
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